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Solar PV Facts
Cumulative global 
installed solar PV capacity 
has topped the 100 GW in 
2012 
Global installed PV 
capacity increased by 30 
GW in 2012. 
Global average PV 
module prices were 
$3.65/W in 2008

http://www.nrel.gov/analysis/re_market_data_solar.html?print



Photovoltaic Solar Cells
Solar cells based on inorganic 
nanorods and semiconducting 
polymers
Nanorods can be made of 
CdSe, a semiconducting 
material
Nanorods act like wires, 
absorbing light and generating 
hole-electron pairs
Biggest challenge is cost, ~30 
cents/kWh



Solar cell efficiency in a nutshell
Photons strike 
electrons with a given 
energy

If the energy is 
sufficient then the 
electron can “jump” up 
to a higher state

Combined effect is to 
generate electricity
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Can one use an intermediate state to 
improve solar cell efficiency?

Single band material 
theoretical PV efficiency 
is 30%

One proposed material 
ZnTe:O

Is there really a gap?

What’s the right mixture 
of O to ZnTe?

L-W. Wang, B. Lee, Z. Zhao, H. Shan, 
J. Meza, D. Bailey, E. Strohmaier.
INCITE project, NERSC, NCCS.



The calculated dipole moment of a 2633 atom CdSe 
quantum rod, Cd961Se724H948. Using 2560 processors at 
NERSC the calculation took about 30 hours.

Wang, Zhao, Meza, Phys. Rev. B, 77, 165113 (2008)

1,000 ~ 100,000 atom 
systems are too large 
for direct O(N3) ab 
initio calculations 

 Take advantage of the 
“near-sighted” principle 

A divide and conquer 
scheme with a new 
approach for patching 
the fragments together

Need to simulate realistic nanosystems



Can one use an intermediate state to 
improve solar cell efficiency?

Yes, there is a gap, and O 
induced states are very 
localized

One calculation for 
3500 atom 3% O alloy 
took 1 hour on 17,000 
cores

L-W. Wang, B. Lee, Z. Zhao, H. Shan, J. Meza, D. Bailey, E. Strohmaier. INCITE project, NERSC, NCCS.
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Fundamental 
Equations

Standard
Methods for 
Kohn-Sham

How can we
improve these?

New Optimization
Approach

Why might
this approach 
be beer?

Beyond to
new methods

Our Roadmap



Review of 
Fundamental 

Equations



Problem Solved

...in the Schrödinger equation we very nearly have the 
mathematical foundation for the solution of the whole 
problem of atomic and molecular structure ...

almost

…the problem of the many bodies contained in the atom 
and the molecule cannot be completely solved without a 
great further development in mathematical technique.

G.N. Lewis, J. Chem. Phys. 1, 17 (1933)
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• �i contains all the information needed to study a system

• |�i|2 probability density of finding electrons at a certain state

• Ei quantized energy

• Computational work goes as 103N , where N is the number of electrons

Many-body Schrödinger equation



Density Functional Theory
The unknown is simple – the electron density,
Hohenberg-Kohn Theory (1964)
§ There is a unique mapping between the ground 

state energy from Schrödinger’s equation and the 
electron density, i.e. E(   )

§ Exact form of the functional is unknown
Independent particle model
§ Electrons move independently in an average 

effective potential field
§ Add correction for correlation

Good compromise between accuracy and feasibility
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Replace many-particle wavefunctions,    , with single-
particle wavefunctions, 
Write Kohn-Sham total energy as:

Exchange-correlation term,       , contains quantum 
mechanical contributions, plus part of K.E. not covered by 
first term when using single-particle wavefunctions

Kohn-Sham formulation
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H⇤i = �i⇤i, i = 1, 2, ..., ne

H =
�
�1

2
⇤2 + Vion(r) +

⇤
⇥

|r � r� | + Vxc(⇥)
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Kohn-Sham equations
Goal is to find the ground state energy by minimizing 
total energy,
Leads to:

Etotal



Discretized Kohn-Sham equations

Many different discretization schemes 
available
Large nonlinear eigenvalue problem
Orthogonality constraints

H(X)X = X�,

X�X = Ine ,

H(X) =
1
2
L + Vion + Diag (L†�(X)) + Diag gxc(�(X))



Standard Methods for the
 Kohn-Sham Equations



Solving the Kohn-Sham equations
Self-Consistent Field (SCF) iteration
§ view as a linear eigenvalue problem
§ need to precondition
§ usually used with other acceleration techniques to 

improve convergence
§ no good convergence theory

Direct Constrained Minimization
§ minimize the total energy directly
§ pose as a constrained optimization problem
§ also requires globalization techniques

Invariance property

E(XQ) = E(X)
H(XQ) = H(X)

for any Q�Q = Ine



Basic SCF iteration
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Overall Complexity
Major computational work 
(for plane wave codes):

3D FFT
Orthogonalization
Nonlocal potential

May converge slowly and 
sometimes doesn’t 
converge at all
Energy need not decrease 
monotonically

O(N3)

{�i}i=1,...,N



Improving SCF
Construct better surrogate – cannot afford to use local 
quadratic approximations (Hessian too expensive)

Charge mixing to improve convergence; related to 
Broyden methods

Use trust region to restrict the update to stay within a 
neighborhood of the gradient matching point
§ Level-Shifting (Saunders & Hillier 1973)
§ Cances & LeBris 2000
§ TRSCF – Thogersen, Olsen, Yeager & Jorgensen 2004; 

Francisco, Martinez, Martinez 2006; Yang, Meza, Wang 
(2007)



Many choices for charge mixing
Simple mixing

Pulay mixing (Direct Inversion of Iterative Subspace)

Broyden mixing

Anderson mixing
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Trust Region subproblem
Solve

Equivalent to solving

    is a penalty parameter (Lagrange multiplier for TR) 

�
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Direct Constrained 
Minimization 

of the
 Kohn-Sham Equations



Solving the Kohn-Sham equations
Self-Consistent Field (SCF) iteration
§ view as a linear eigenvalue problem
§ need to precondition
§ usually used with other acceleration techniques to 

improve convergence
§ no good convergence theory

Direct Constrained Minimization
§ minimize the total energy directly
§ pose as a constrained optimization problem
§ also requires globalization techniques

Invariance property

E(XQ) = E(X)
H(XQ) = H(X)

for any Q�Q = Ine



Direct Constrained Minimization
• Assume x(i) is the current approximation

• Idea: minimize the energy in a certain (smaller) subspace

• Update x(i+1) = �x(i) + ⇥p(i�1) + ⇤r(i);

– p(i�1) previous search direction;
– r(i) = H(i)x(i) � ⌅(i)x(i);
– choose �, ⇥ and ⇤ so that

⇥ xT
k+1xk+1 = 1;

⇥ E(xk+1) < E(xk);

Remark 1: A nonlinear CG-like algorithm
Remark 2: Extension of LOBPCG (Knyazev) to nonlinear EV



Subspace minimization

• Let V = (x(i), p(i�1), r(i)); x(i+1) = V y, for some y;

• Solve
min

yT V T V y=1
E(V y)

• Equivalent to solving

G(y)y = �By

yT By = 1

where B = V T V and G(y) = V T [L + �Diag(L�1⇥(V y))]V



DCM algorithm
Input: Initial guess
Output:      such that         is minimized

1. P (0) = [], i = 0;

2. while ( not converged )

(a) �(i) = X(i)⇥H(i)X(i);
(b) R(i) = H(i)X(i) �X(i)�(i);
(c) Set Y = (X(i), P (i�1), K�1R(i));
(d) Solve minG�Y �Y G=Ik Etot(Y G);
(e) X(i+1) = Y G(1 : ne, :); P (i+1) = Y G(ne + 1 : 3ne, :);
(f) i⇥ i + 1;

X EKS

C. Yang, J. Meza, L. Wang, A Constrained Optimization Algorithm for Total Energy Minimization in 
Electronic Structure Calculation, J. Comp. Phy., 217 709-721 (2006)



Test problems

KSSOLV Matlab code for solving the Kohn-Sham 
equations

§ Open source package

§ Handles SCF, DCM, Trust Region

§ Various mixing strategies

Example problems: alanine and graphene

Tests run on desktop computer
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SCF+Charge mixing
DCM

Example:  Alanine

sampling grid: 
• 96 x 48 x 96 

(ecut=25 Ryd)
10 PCG 
iterations / SCF 
outer iteration
3 inner SCF 
iteration / DCM 
outer iteration
supercell:
§  20 x 15 x 20

DCM: 253 secs 
SCF:  504 secs
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SCF+Charge mixing

DCM

Example: Graphene

sampling grid:
• 114 x 114 x 15

10 PCG 
iterations / SCF 
outer iteration
5 inner SCF 
iteration / DCM 
outer iteration
supercell:

40 x 40 x 5
DCM: 2169 sec.
SCF:  4109 sec. 



Comparison of DCM vs. SCF 

system SCF time DCM time SCF error DCM error
C2H6 26 25 9.4 e-6 3.5 e-6
CO2 26 23 3.1 e-3 1.1 e-4
H2O 16 16 5.7 e-5 2.2 e-5
HNCO 34 32 7.4 e-3 6.8 e-5
Quantum dot 18 16 5.0 e-3 3.7 e-1
Si2H4 25 23 1.8 e-3 2.7 e-4
silicon bulk 15 15 3.0 e-4 9.6 e-6
SiH4 20 19 9.7 e-6 4.9 e-7
Pt2Ni6O 415 281 3.7 e0 4.9 e-2
pentacene 887 493 5.2 e-1 2.5 e-2



Summary
Numerous opportunities for numerical 
analysts in energy and environmental 
applications

New approach for solving the Kohn-Sham 
equations for modeling solar photovoltaic 
materials  

The combination of modeling, algorithms,  
and computational software is providing 
unprecedented levels of predictive 
simulations

Much more to come ....



ENGINEERING

Serving California’s Future
The Genesis of UC Merced

Thank you!



Questions
QuestionsQuestionsQuestions



First Nanoscientists?


