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We describe the design and implementation of KSSOLV, a MATLAB toolbox for solving a class

of nonlinear eigenvalue problems known as the Kohn-Sham equations. These types of problems

arise in electronic structure calculations, which are nowadays essential for studying the mi-

croscopic quantum mechanical properties of molecules, solids, and other nanoscale materials.

KSSOLV is well suited for developing new algorithms for solving the Kohn-Sham equations and

is designed to enable researchers in computational and applied mathematics to investigate the

convergence properties of the existing algorithms. The toolbox makes use of the object-oriented

programming features available in MATLAB so that the process of setting up a physical sys-

tem is straightforward and the amount of coding effort required to prototype, test, and compare

new algorithms is significantly reduced. All of these features should also make this package at-
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1. INTRODUCTION

KSSOLV is a MATLAB toolbox for solving a class of nonlinear eigenvalue
problems known as the Kohn-Sham equations. These types of problems arise
in electronic structure calculations, which are nowadays essential for study-
ing the microscopic quantum mechanical properties of molecules, solids, and
other nanoscale materials. Of the many approaches for studying the elec-
tronic structure of molecular systems, methods based on density functional
theory (DFT) [Hohenberg and Kohn 1964] have been shown to be among
the most successful. Through the DFT formalism, one can reduce the many-
body Schrödinger equation used to describe the electron-electron and electron-
nucleus interactions to a set of single-electron equations that have far fewer
degrees of freedom. These equations, which we will describe in more detail
in the next section, were first developed by W. Kohn and L. J. Sham [Kohn
and Sham 1965]. Discretizing the single-electron equations results in a set of
nonlinear equations that resemble algebraic eigenvalue problems presented in
standard linear algebra textbooks [Demmel 1997; Golub and Van Loan 1989;
Trefethen and Bau III 1997]. The main feature distinguishing the Kohn-Sham
equations from the standard linear eigenvalue problem is that the matrix oper-
ator in these equations is a function of the eigenvectors that must be computed.
For this reason, the problem defined by the Kohn-Sham equations is more ac-
curately described as a nonlinear eigenvalue problem.

Due to the nonlinear coupling between the matrix operator and its eigenvec-
tors, the Kohn-Sham equations are more difficult to solve than standard linear
eigenvalue problems. Currently, the most widely used numerical method for
solving this type of problem is the Self Consistent Field (SCF) iteration, which
we will examine in detail in Section 3. The SCF iteration has been implemented
in almost all quantum chemistry and physics software packages. However, the
mathematical convergence properties of SCF are not yet fully understood; for
example, it is well known that the simplest form of SCF iteration often fails to
converge to the correct solution [Le Bris 2005]. Although a number of techniques
have been developed by chemists and physicists to improve the convergence of
SCF, these methods are also not well understood, and they can fail in practice
as well.

Clearly, more work is needed to investigate the mathematical properties of
the Kohn-Sham equations, to rigorously analyze the convergence behavior of
the SCF iteration, and to develop improved numerical methods that are both
reliable and efficient. Some progress has recently been made in this direction
[Le Bris 2005; Cancès and Le Bris 2000b; Cancès 2001]. However, many ef-
forts have been hampered within the larger applied mathematics community
by the lack of mathematical software tools that one can use to quickly grasp
the numerical properties of the Kohn-Sham equations and to perform simple
computational experiments on realistic systems.

The lack of such software tools also makes it difficult to introduce basic DFT
concepts and algorithms into numerical analysis courses, even though these
ideas are relatively well developed in computational chemistry and physics cur-
ricula. Although a number of well-designed software packages are available for
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performing DFT calculations on large molecules and bulk systems [Gonze et al.
2002; Baroni et al. 2006; Kresse and Furthmüller 1996b; Kronik et al. 2006;
Andreoni and Curioni 2000; Wang 2008; Shao et al. 2006], it is often a daunting
task for researchers and students with a minimal physics or chemistry back-
ground to delve into these codes to extract mathematical relations from various
pieces of the software. Furthermore, because these codes are usually designed
to handle large systems efficiently on parallel computers, the data structures
employed to encode basic mathematical objects such as vectors and matrices
are often sophisticated and difficult to understand. Consequently, standard nu-
merical operations such as fast Fourier transforms, numerical quadrature cal-
culations, and matrix vector multiplications become nontransparent, making
it difficult for a computational mathematician to develop and test new ideas in
such an environment.

The KSSOLV toolbox we developed provides a tool that will enable computa-
tional mathematicians and scientists to study properties of the Kohn-Sham
equations by rapidly prototyping new algorithms and performing computa-
tional experiments more easily. It will also allow them to develop and compare
numerical methods for solving these types of problems in a user friendly envi-
ronment. One of the main features of KSSOLV is its objected-oriented design,
which allows users with a minimal physics or chemistry background to as-
semble a realistic atomistic system quickly. The toolbox also allows developers
to easily manipulate wavefunctions and Hamiltonians within a more familiar
linear algebra framework.

We will present the main features and capabilities of KSSOLV in this article.
Since KSSOLV is targeted primarily toward users who are interested in the
numerical analysis aspects of electronic structure calculations, our focus will be
on numerical algorithms and how they can be easily prototyped within KSSOLV.
We provide some background information on the Kohn-Sham equations and
their properties in Section 2. Numerical methods for solving these types of
problems are discussed in Section 3 along with some of the difficulties one
may encounter. We then describe the design features and the implementation
details of KSSOLV in Section 4. In Section 5, we illustrate how an algorithm
for solving the Kohn-Sham equations can be easily implemented in KSSOLV.
Several examples are provided in Section 6 to demonstrate how KSSOLV can
be used to study the convergence behavior of different algorithms and visualize
the computed results. Throughout this article, we will use ‖ · ‖ to denote the
2-norm of a vector, and ‖ · ‖F to denote the Frobenius norm of a matrix.

2. KOHN-SHAM ENERGY MINIMIZATION

Properties of molecules, solids, and other nanoscale materials are largely de-
termined by the interactions among electrons in the outer shells of their atomic
constituents. These interactions can be characterized quantitatively by the elec-
tron density, which can be viewed as a multidimensional probability distribu-
tion. The electron density of a many-atom system can be obtained by solving
the well known many-body Schrödinger equation

H�(r1, r2, . . . , rne ) = λ�(r1, r2, . . . , rne ). (1)
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Here �(r1, r2, . . . , rne ) (ri ∈ R
3 and ne is the number of electrons) is a many-body

wavefunction whose magnitude squared characterizes an electronic configura-
tion in a probabilistic sense, i.e., |�(r1, r2, . . . , rne )|2dr1dr2 · · · drne represents the
probability of finding electron 1 in a small volume around r1, electron 2 in a
small volume around r2, etc., and∫

�

�∗�d� = 1, (2)

where � = �1 × �2 · · · �ne , and �i ⊆ R
3. Furthermore, the wavefunction must

also obey the antisymmetry principle, defined by

�(r1, . . . , ri, . . . , rk , . . . , rne ) = −�(r1, . . . , rk , . . . , ri, . . . , rne ). (3)

The differential operator H is a many-body Hamiltonian that relates the elec-
tronic configuration to the energy of the system. When appropriate boundary
conditions are imposed, the energy must be quantized and is denoted here by
λ ∈ R.

Using the Born-Oppenheimer approximation, which is to say that we assume
the positions of the nuclei r̂ j , j = 1, 2, . . . , nu, are fixed, where nu denotes the
number of nuclei, the many-electron Hamiltonian H can be defined (in atomic
units) by

H = −1

2

ne∑
i=1

�ri −
nu∑
j=1

ne∑
i=1

z j

||ri − r̂ j || +
∑

1≤i, j≤ne

1

||ri − r j || , (4)

where �ri is the Laplacian operator associated with the ith electron, and z j is
the charge of the j th nucleus.

Equation (1) is clearly an eigenvalue problem. In many cases, we are inter-
ested in the eigenfunction � associated with the smallest eigenvalue λ1, which
corresponds to the minimum (ground state) of the total energy functional

Etotal(�) =
∫

�

�∗H� d�, (5)

subject to the normalization and antisymmetry constraints (2) and (3). For
atoms and small molecules that consist of a few electrons (less than three),
we can discretize (1) and solve the eigenvalue problem directly. However, as
ne increases, the number of degrees of freedom in (1), after it is discretized,
increases exponentially making the problem computationally intractable. For
example, if ri is discretized on an m×m×m grid, the dimension of H is n = m3ne .
For m = 32 and ne = 5, n is greater than 3.5×1022. Thus, it would be infeasible
to solve the resulting eigenvalue problem on even the most powerful computers
available today.

To address the dimensionality curse, several approximation techniques have
been developed to decompose the many-body Schrödinger equation (1) into a
set of single-electron equations that are coupled through the electron density
(defined below). The most successful among these is based on Density Func-
tional Theory [Hohenberg and Kohn 1964]. In their seminal work, Hohenberg
and Kohn proved that, at the ground-state, the total energy of an electronic
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system can be described completely by a function of the three-dimensional
(3D) electron density

ρ(r) ≡ ne

∫
�\�1

|�(r, r2, r3, . . . , rne )|2dr2dr3 · · · drne .

Assuming all electrons are indistinguishable, the quantity ρ(r)dr/ne gives the
probability of finding an electron within a small volume around r ∈ R

3.
Unfortunately the proof given in Hohenberg and Kohn [1964] is not con-

structive and the analytical expression for this density-dependent total energy
functional is unknown. Subsequently, Kohn and Sham [1965] proposed a practi-
cal procedure to approximate the total energy by making use of single-electron
wavefunctions associated with a noninteracting reference system. Using this
Kohn-Sham model, the total energy (5) can be defined as

EKS
total = 1

2

ne∑
i=1

∫
�

||∇ψi(r)||2dr +
∫

�

ρ(r)Vion(r)dr

+ 1

2

∫
�

∫
�

ρ(r)ρ(r ′)
||r − r ′|| drdr′ + Exc(ρ), (6)

where ψi, i = 1, 2, . . . , ne are the single-particle wavefunctions that satisfy the
orthonormality constraint

∫
ψ∗

i ψ j = δi, j , and � ⊂ R
3. Here ρ(r) is the charge

density defined by

ρ(r) =
ne∑

i=1

ψ∗
i (r)ψi(r). (7)

The function Vion(r) = ∑nu
j=1 z j /||r − r̂ j || represents the ionic potential induced

by the nuclei, and Exc(ρ) is known as the exchange-correlation energy, which is
a correction term used to account for energy that the noninteracting reference
system fails to capture.

As the analytical form of Exc(ρ) is unknown, several approximations have
been derived semi-empirically [Perdew and Zunger 1981; Perdew and Wang
1992]. In KSSOLV, we use the local density approximation (LDA) proposed in
Kohn and Sham [1965]. In particular, Exc is expressed as

Exc(ρ) =
∫

�

ρ(r)εxc[ρ(r)]dr, (8)

where εxc(ρ) represents the exchange-correlation energy per particle in a uni-
form electron gas of density ρ. The analytical expression of εxc used in KSSOLV
is the widely accepted formula developed in Perdew and Zunger [1981]. To sim-
plify the presentation, we have ignored the spin degree of freedom in ψi(r), ρ(r),
and Exc. For some applications, it is important to include this extra degree of
freedom which gives the local spin-density approximation (LSDA) of Exc.

It is not difficult to show that the first-order necessary condition (Euler-
Lagrange equation) for the constrained minimization problem

min EKS
total({ψi})

{ψi}
s.t ψ∗

i ψ j = δi, j

(9)
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has the form

H(ρ)ψi = λiψi, i = 1, 2, . . . , ne, (10)

ψ∗
i ψ j = δi, j , (11)

where the single-particle Hamiltonian H(ρ) (also known as the Kohn-Sham
Hamiltonian) is defined by

H(ρ) = −1

2
� + Vion(r) + ρ(r) 


1

||r|| + Vxc(ρ), (12)

where 
 denotes the convolution operator. The function Vxc(ρ) in (12) is the
derivative of Exc(ρ) with respect to ρ. Because the Kohn-Sham Hamiltonian is
a function of ρ, which is in turn a function of {ψi}, the set of equations defined by
(10) results in a nonlinear eigenvalue problem. These equations are collectively
referred to as the Kohn-Sham equations. Interested readers can learn more
about these equations from several sources (e.g., Nogueira et al. [2003]).

3. NUMERICAL METHODS

In this section, we will describe the numerical methods employed in KSSOLV
to obtain an approximate solution to the Kohn-Sham equations (10)–(11).
We begin by discussing the planewave discretization scheme that turns the
continuous nonlinear problem into a finite-dimensional problem. The finite-
dimensional problem is expressed as a matrix problem in Section 3.2. We
present two different approaches to solving the matrix nonlinear eigenvalue
problem in Sections 3.3 and 3.4. Both of these approaches have been imple-
mented in KSSOLV.

3.1 Planewave Discretization

To solve the minimization problem (9) or the Kohn-Sham equations numeri-
cally, we must first discretize the continuous problem. Standard discretization
schemes such as finite difference, finite elements and other basis expansion
(Ritz-Galerkin) methods [Ritz 1908] all have been used in practice. The dis-
cretization scheme we have implemented in the current version of KSSOLV is
a Ritz type of method that expresses a single electron wavefunction ψ(r) as a

linear combination of planewaves {e−i gT
j r}, where g j ∈ R

3 ( j = 1, 2, . . . , ng ) are
frequency vectors arranged in a lexicographical order. The planewave basis is a
natural choice for studying periodic systems such as solids. It can also be applied
to nonperiodic structures (e.g., molecules) by embedding these structures in a
fictitious supercell [Payne et al. 1992] that is periodically extended throughout
an open domain. The use of the planewave basis has the additional advantage
of making various energy calculations in density functional theory easy to im-
plement. It is the most convenient choice for developing and testing numerical
algorithms for solving the Kohn-Sham equations within the MATLAB environ-
ment, partly due to the availability of efficient fast Fourier transform (FFT)
functions.

It is natural to assume that the potential for R-periodic atomistic systems is a
periodic function with a period R ≡ (R1, R2, R3). Consequently, we can restrict
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ourselves to one canonical period often referred to as the primitive cell and
impose periodic boundary conditions on the restricted problem. It follows from
Bloch’s theorem [Ashcroft and Mermin 1976; Bloch 1928] that eigenfunctions
of the restricted problem ψ(r) can be periodically extended to the entire domain
(to form the eigenfunction of the original Hamiltonian) by using the following
formula:

ψ(r + R) = eikT Rψ(r), (13)

where k = (k1, k2, k3) is a frequency or wave vector that belongs to a prim-
itive cell in the reciprocal space (e.g., the first Brillouin zone (BZ) [Ashcroft
and Mermin 1976]). If the R-periodic system spans the entire infinite open
domain, the set of k’s allowed in (13) forms a continuum in the first Brillouin
zone. That is, each ψ(r) generates an infinite number of eigenfunctions for the
periodic structure. It can be shown that the corresponding eigenvalues form a
continuous cluster in the spectrum of the original Hamiltonian [Ashcroft and
Mermin 1976]. Such a cluster is often referred to as an energy band in physics.
Consequently, the complete set of eigenvectors of H can be indexed by the band
number i and the Brillouin frequency vector k (often referred to as a k-point),
that is, ψi,k . In this case, the evaluation of the charge density must first be
performed at each k-point by replacing ψi(r) in (7) with ψi,k to yield

ρk(r) =
ne∑

i=1

|ψi,k(r)|2.

The total charge density ρ(r) can then be obtained by integrating over k, that
is,

ρ(r) = |�|
(2π )3

∫
BZ

ρk(r)dk, (14)

where |�| denotes the volume of the primitive cell in the first Brillouin zone.
Furthermore, an integration with respect to k must also be performed for the
kinetic energy term in (6).

When the primitive cell (or supercell) in real space is sufficiently large, the
first Brillouin zone becomes so small that the integration with respect to k can
be approximated by a single k-point calculation in (6) and (14).

To simplify our exposition, we will, from this point on, assume that a large
primitive cell is chosen in the real space so that no integration with respect to
k is necessary. Hence we will drop the index k in the following discussion and
use ψ(r) to represent an R-periodic single particle wavefunction. The periodic
nature of ψ(r) implies that it can be represented (under some mild assumptions)
by a Fourier series, that is,

ψ(r) =
∞∑

j=−∞
c j eigT

j r , (15)

where c j is a Fourier coefficient that can be computed from

c j =
∫ R/2

−R/2

ψ(r)e−i gT
j rdr.
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To solve the Kohn-Sham equations numerically, the Fourier series expansion
(15) must be truncated to allow a finite number of terms only. If all electrons are
treated equally, the number of terms required in (15) will be extremely large.
This is due to the observation that the strong interaction between a nucleus
and the inner electrons of an atom, which can be attributed to the presence
of singularity in Vion(r) at the the nuclei position r̂ j , must be accounted for
by high-frequency planewaves. However, because the inner electrons are held
tightly to the nuclei, they are not active in terms of chemical reactions, and
they usually do not contribute to chemical bonding or other types of interaction
among different atoms. On the other hand, the valence electrons (electrons in
atomic orbits that are not completely filled) can be represented by a relatively
small number of low frequency planewaves. These electrons are the most inter-
esting ones to study because they are responsible for a majority of the physical
properties of the atomistic system. Hence, it is natural to focus only on these
valence electrons and treat the inner electrons as part of an ionic core. An
approximation scheme that formalizes this approach is called the pseudopoten-
tial approximation [Phillips 1958; Phillips and Kleinman 1958; Yin and Cohen
1982]. The details of pseudopotential construction and their theoretical proper-
ties are beyond the scope of this article. For the purpose of this article, we shall
just keep in mind that the use of pseudopotentials allows us to

(1) remove the singularity in Vion;

(2) reduce the number of electrons ne in (6) and (7) to the number of valence
electrons;

(3) represent the wavefunction associated with a valence electron by a small
number of low frequency planewaves.

In practice, the exact number of terms used in (15) is determined by a kinetic
energy cutoff Ecut . Such a cutoff yields an approximation

ψ(r) =
ng∑
j=1

c j eigT
j r , (16)

where ng is chosen such that

||g j ||2 < 2Ecut , (17)

for all j = 1, 2, . . . , ng . Although, the value of ng will depend on many param-
eters such as the size and type of the system being studied, it is typically an
order of magnitude smaller than n = n1 × n2 × n3.

Once Ecut is chosen, the minimal number of samples of r along each Cartesian
coordinate direction (n1, n2, n3) required to represent ψ(r) (without the aliasing
effect) can be determined from the sampling theorem [Nyquist 1928]. That is,
we must choose nk (k = 1, 2, 3) sufficiently large so that

1

2

(
2πnk

Rk

)
> 2

√
2Ecut , (18)

is satisfied, that is, nk must satisfy nk > 2Rk
√

2Ecut/π .
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We will denote the uniformly sampled ψ(r) by a vector x ∈ R
n, where n =

n1n2n3 and the Fourier coefficients c j in (16) by a vector c ∈ C
n with zero

paddings used to ensure the length of c matches that of x. If the elements of x
and c are ordered properly, these two vectors satisfy

c = F x, (19)

where F ∈ C
n×n is a discrete Fourier transform matrix [Van Loan 1987].

After a sampling grid has been properly defined, the approximation to the
total energy can be evaluated by replacing the integrals in (6) and (8) with
simple summations over the sampling grid.

The use of a planewave discretization makes it easy to evaluate the kinetic
energy of the system. Since

∇reigT
j r = i g j eigT

j r ,

the first term in (6) can be computed as

1

2

ne∑
�=1

ng∑
j=1

||g j c
(�)
j ||2, (20)

where c(�)
j is the j th Fourier coefficient of the wavefunction associated with

the �th valence electron (denoted by x�). Here, one can take advantage of the
orthogonality properties of the planewave basis, which allows one to remove
the integral from the equation.

3.2 Finite-Dimensional Kohn-Sham Problem

If we let X ≡ (x1, x2, . . . , xne ) ∈ C
n×ne be a matrix that contains ne discretized

wavefunctions, the approximation to the kinetic energy (6) can also be expressed
by

Êkin = 1

2
trace(X ∗LX ), (21)

where L is a finite-dimensional representation of the Laplacian operator in the
planewave basis. Due to the periodic boundary condition imposed in our prob-
lem, L is a block circulant matrix with circulant blocks that can be decomposed
as

L = F ∗Dg F, (22)

where F is the discrete Fourier transform matrix used in (19), and Dg is a
diagonal matrix with ||g j ||2 on the diagonal [Davis 1979]. If follows from (19)
and (22) that (20) and (21) are equivalent.

In the planewave basis, the convolution that appears in the third term of (6)
may be viewed as the L−1ρ(X ), where ρ(X ) = diag(X X ∗). (To simplify notation,
we will drop X in ρ(X ) in the following.) However, since L is singular (due to
the periodic boundary condition), its inverse does not exist. Similar singularity
issues appear in the planewave representation of the pseudopotential and the
calculation of the ion-ion interaction energy. However, it can be shown that
the net effects of these singularities cancel out for a system that is electrically
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neutral [Ihm et al. 1979; Pickett 1989]. Thus, one can simply remove these
singularities by replacing L−1ρ with L†ρ, where L† is the pseudoinverse of L
defined as

L† = F ∗D†
g F,

where D†
g is a diagonal matrix whose diagonal entries (d j ) are

d j =
{ ||g j ||−2 if g j = 0;

0 otherwise.

Consequently, the third term in (6), which corresponds to an approximation to
the Coulomb potential, can be evaluated as

Êcoul = ρT L†ρ = [Fρ]∗D†
g [Fρ].

However, removing these singularities results in a constant shift of the total
energy, for which a compensation must be made. It has been shown in Ihm et al.
[1979] that this compensation can be calculated by adding a term Erep that mea-
sures the degree of repulsiveness of the local pseudopotential with a term that
corresponds to the nonsingular part of ion-ion potential energy. Because the sec-
ond term can be evaluated efficiently by using a technique originally developed
by Ewald [1921], it is denoted by EEwald. Both Erep and EEwald can be computed
once and for all in a DFT calculation. We will not go into further details of how
they are computed since they do not play any role in the algorithms we will
examine in this article.

To summarize, the use of a planewave basis allows us to define a finite-
dimensional approximation to the total energy functional (6) as

Êtotal(X ) = trace

[
X ∗

(
1

2
L + V̂ion

)
X

]
+ 1

2
ρT L†ρ + ρT εxc(ρ) + EEwald + Erep,

(23)

where V̂ion denotes the ionic pseudopotentials sampled on the suitably chosen
Cartesian grid of size n1 × n2 × n3.

It is easy to verify that the KKT condition associated with the constrained
minimization problem

min
X ∗ X =I

Êtotal(X ) (24)

is

H(X )X − X ne = 0, (25)

X ∗X = I,

where

H(X ) = 1

2
L + V̂ion + Diag(L†ρ) + Diag(μxc(ρ)), (26)

μxc(ρ) = dεxc(ρ)/dρ, and ne is a ne × ne symmetric matrix of Lagrangian
multipliers. For simplicity, we will frequently denote the last three terms
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Fig. 1. The SCF iteration.

in (26) by

Vtot = V̂ion + Diag(L†ρ) + Diag(μxc(ρ)). (27)

Because Êtotal(X ) = Êtotal(X Q) for any orthogonal matrix Q ∈ C
ne×ne , we can

always choose a particular Q such that ne is diagonal. In this case, ne contains
ne eigenvalues of H(X ). We are interested in the ne smallest eigenvalues and
the invariant subspace X associated with these eigenvalues.

3.3 The SCF Iteration

Currently, the most widely used algorithm for solving (25) is the self-consistent
field (SCF) iteration which we outline in Figure 1 for completeness.

In Yang et al. [2007], we viewed the SCF iteration as an indirect way to
minimize Êtotal through the minimization of a sequence of quadratic surrogate
functions of the form

q(X ) = 1

2
trace(X ∗H (k) X ) (28)

on the manifold X ∗X = Ine . This constrained minimization problem is solved in
KSSOLV by running a small number of locally optimal preconditioned conjugate
gradient (LOBPCG) iterations [Knyazev 2001].

Since the surrogate functions share the same gradient with Êtotal at X (k),
that is,

∇ Êtotal(X )|X =X (k) = H (k) X (k) = ∇q(X )|X =X (k) ,

moving along a descent direction associated with q(X ) is likely to produce a
reduction in Êtotal. However, because gradient information is local, there is no
guarantee that the minimizer of q(X ), which may be far from X (k), will yield
a lower Êtotal value. This observation partially explains why SCF often fails to
converge. It also suggests at least two ways to improve the convergence of SCF.

One possible improvement is to replace the simple gradient-matching sur-
rogate q(X ) with another quadratic function whose minimizer is more likely
to yield a reduction in Êtotal. In practice, this alternative quadratic function
is often constructed by replacing the charge density ρ(k) in (26) with a linear
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combination of m previously computed charge densities, that is,

ρmix =
m−1∑
j=0

α j ρ
(k− j ),

where a = (α0, α2, . . . , αk−m+1) is chosen as the solution to the following mini-
mization problem:

min
aT e=1

‖Ra‖2, (29)

where R = (�ρ(k) �ρ(k−1) · · · �ρ(m−1)), �ρ(k) = ρ(k) − ρ(k−1) and e =
(1, 1, . . . , 1)T . This technique is often called charge mixing. The particular mix-
ing scheme defined by the solution to (29) is called Pulay mixing because it was
first proposed by Pulay for Hartree-Fock calculations [Pulay 1980, 1982]. (In
computational chemistry, Pulay mixing is referred to as the method of direct
inversion of iterative subspace or simply DIIS.) Other mixing schemes include
Kerker mixing [Kerker 1981], Thomas-Fermi mixing [Raczkowski et al. 2001],
and Broyden mixing [Kresse and Furthmüller 1996a]. Charge mixing is often
quite effective in practice for improving the convergence of SCF even though
its convergence properties are still not well understood. In some cases, charge
mixing may fail also [Cancès and Le Bris 2000a; Yang et al. 2005].

Another way to improve the convergence of the SCF iteration is to impose
an additional constraint to the surrogate minimization problem (28) so that
the wavefunction update can be restricted within a small neighborhood of the
gradient matching point X (k), thereby ensuring a reduction of the total energy
function as we minimize the surrogate function. In Yang et al. [2007], we showed
that the following type of constraint

‖X X ∗ − X (k) X (k)∗‖2
F ≤ �,

where � > 0 is a suitably chosen parameter, is preferred because it is rotation-
ally invariant (i.e., postmultiplying X by an unitary matrix does not change the
constraint) and because adding such a constraint does not increase the com-
plexity of solving the surrogate minimization problem. It is not difficult to show
[Yang et al. 2007] that solving the following constrained minimization problem,

min q(X )
X X ∗ = I

‖X X ∗ − X (k) X (k)∗‖2
F ≤ �,

(30)

is equivalent to solving a low-rank perturbed linear eigenvalue problem

[H (k) − σ X (k) X (k)∗]X = X , (31)

where σ can be viewed as the Lagrange multiplier for the inequality constraint
in (30), and  is a diagonal matrix that contains the ne smallest eigenvalues of
the low-rank perturbed matrix H (k). When σ is sufficiently large (which corre-
sponds to a trust region radius � that is sufficiently small), the solution to (31)
is guaranteed to produce a reduction in Êtotal(X ).

When ne is relatively small compared to n, the computational complexity of
the SCF iteration is dominated by the floating point operations carried out in
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the multiplications of H (k) with discretized wavefunctions in X . These multi-
plications are performed repeatedly in an iterative method (e.g., the LOBPCG
method or the Lanczos method) used at Step 3 in Figure 1 to obtain an ap-
proximate minimizer of (28). When a planewave expansion is used to represent
X , each multiplication requires the use of a 3D FFT operation to convert the
Fourier space representation of each column of X into the real space repre-
sentation before multiplications involving local potential terms in (27) can be
carried out. An inverse 3D FFT is required to convert the product back to the
Fourier space. The complexity of each conversion is O(n log n). If m LOBPCG
iterations are used on average to obtain an approximate minimizer of (28), the
total number of 3D FFTs required per SCF iteration is 2mne. In addition, each
SCF iteration also performs O(n · n2

e ) basic linear algebra (BLAS) operations.
When ne becomes larger, these operations can become a significant part of the
computational cost.

The amount of memory required by the SCF iteration consists of 3ng ne dou-
ble precision and complex arithmetic words that must be allocated to store the
current approximation to the desired wavefunctions, the projected gradient of
the total energy (on to the tangent of the orthonormality constraint), and addi-
tional workspace required in the LOBPCG or Lanczos algorithm for eigenvector
calculations. An additional γ n words are needed to store the various potential
components in the Hamiltonian, the charge density approximation ρ, as well as
vectors that must be saved to perform charge mixing in (29), where the value
of γ is typically less than 20.

3.4 Direct Constrained Minimization

Instead of focusing on Kohn-Sham equations (25) and minimizing the total
energy indirectly in the SCF iteration, we can minimize the total energy directly
in an iterative procedure that involves finding a sequence of search directions
along which Êtotal(X ) decreases and computing an appropriate step length. In
most of the earlier direct minimization methods developed in Arias et al. [1992],
Gillan [1989], Kresse and Furthmüller [1996a], Payne et al. [1992], Teter et al.
[1989], VandeVondele and Hutter [2003], and Voorhis and Head-Gordon [2002],
the search direction and step length computations were carried out separately.
This separation sometimes results in slow convergence. We recently developed a
new direct constrained minimization (DCM) algorithm [Yang et al. 2005, 2007]
in which the search direction and step length are obtained simultaneously in
each iteration by minimizing the total energy within a subspace spanned by
columns of

Y = (
X (k), M−1 R(k), P (k−1)

)
,

where X (k) is the approximation to X obtained at the kth iteration, R(k) =
H (k) X (k)−X (k)(k), M is a Hermitian positive definite preconditioner, and P (k−1)

is the search direction obtained in the previous iteration. It was shown in Yang
et al. [2005] that solving the subspace minimization problem is equivalent to
computing the eigenvectors G associated with the ne smallest eigenvalues of
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Fig. 2. A direct constrained minimization algorithm for total energy minimization.

the following nonlinear eigenvalue problem

Ĥ(G)G = BG�, G∗BG = I, (32)

where

Ĥ(G) = Y ∗
[

1

2
L + Vion + Diag(L†ρ(Y G)) + Diag(μxc(ρ(Y G)))

]
Y , (33)

and B = Y ∗Y .
Because the dimension of Ĥ(G) is 3ne ×3ne, which is normally much smaller

than that of H(X ), it is relatively easy to solve (32) by, for example, a trust
region enabled SCF (TRSCF) iteration. We should note that it is not necessary
to solve (32) to full accuracy in the early stage of the DCM algorithm because
all we need is a G that yields sufficient reduction in the objective function.

Once G is obtained, we can update the wave function by

X (k+1) ← YG.

The search direction associated with this update is defined, using the MATLAB
submatrix notation, to be

P (k) ≡ Y (:, ne + 1 : 3ne)G(ne + 1 : 3ne, :).

A complete description of the constrained minimization algorithm is shown in
Figure 2. We should point out that solving the projected optimization problem in
Step 7 of the algorithm requires us to evaluate the projected Hamiltonian Ĥ(G)
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Table I. Classes Defined in KSSOLV

Class Name Purpose

Atom Defines attributes of an atom

Molecule Defines attributes of a molecule or a basic cell of a periodic system

Hamilt Defines attributes of a Kohn-Sham Hamiltonian, e.g., potential

Wavefun Defines one or a set of wavefunctions

FreqMask Defines a mask used to filter high-frequency components of a wavefunction

repeatedly as we search for the best G. However, since the first two terms of Ĥ
do not depend on G. They can be computed and stored in advance. Only the last
two terms of (33) need to be updated. These updates require the charge density,
the Coulomb, and the exchange-correlation potentials to be recomputed.

In each DCM iteration, ne Hamiltonian-wavefunction multiplications are
performed to obtain the gradient. When an iterative method is used to solved the
projected nonlinear eigenvalue problem (32), the charge density ρ(Y G) and the
projected Hamiltonian must be updated repeatedly. The update of the projected
Hartree potential requires us to compute L†ρ(Y G). This calculation makes use
of two 3D FFTs, and hence has a complexity of O(n log n). If m inner iterations
are taken in the DCM algorithm to solve the projected problem, the total number
of 3D FFTs used per DCM iteration is 2(ne + m). The memory requirement of
the DCM algorithm is similar to that of an SCF iteration.

4. THE OBJECT-ORIENTED DESIGN OF KSSOLV

Both the SCF iteration and the DCM algorithm have been implemented in the
KSSOLV toolbox, which is written entirely in MATLAB. It is designed to be
modular, hierarchical, and extensible so that other algorithms can be easily
developed under the same framework. In addition to taking advantage of effi-
cient linear algebra operations and the 3D fast Fourier transform (FFT) func-
tion available in MATLAB, the toolbox also makes use of MATLAB’s object-
oriented programming (OOP) features. KSSOLV contains several predefined
classes that can be easily used to build a physical atomistic model in MATLAB
and to construct numerical objects associated with planewave discretized Kohn-
Sham equations. These classes are listed in Table I. The class names that appear
in the first column of this table are treated as keywords in KSSOLV. We will
demonstrate how specific instances of these classes (called objects) are created
and used in KSSOLV. The internal structure of these classes are explained in
detail in Yang [2007].

The use of the object-oriented design allows us to achieve two main objectives:

(1) simplify the process of setting up a molecular or bulk system and converting
physical attributes of the system to numerical objects that users can work
with easily; and

(2) enable numerical analysts and computational scientists to easily develop,
test and compare different algorithms for solving the Kohn-Sham equation.

In the following, we will illustrate how to define a molecular or bulk system
in KSSOLV by creating Atom and Molecule objects. We will then show how to
set up a Kohn-Sham Hamiltonian, which is represented as a Hamilt object,
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Table II. Attributes To Be Set in a Molecule Object

Attribute Name Purpose Value Type

supercell The primitive or super cell that contains A 3 × 3 matrix

the basic atomic constituents

atomlist List of atoms An array of Atom objects

xyzlist List of atomic coordinates An na × 3 matrix, where

na denotes the number of atoms

ecut Kinetic energy cutoff used for A scalar

planewave discretization

associated with a Molecule object. In KSSOLV, 3-D wavefunctions are repre-
sented as Wavefun objects. Although each Wavefun object stores the Fourier
coefficients of a truncated planewave expansion of one or a few wavefunctions
in a compact way, it can be manipulated as either a vector or a matrix. Both the
Hamilt and the Wavefun objects are used extensively in the KSSOLV implemen-
tation of the SCF and DCM algorithms. As we will see in the following, using
these objects significantly reduces the coding effort required to implement or
prototype numerical algorithms for solving the Kohn-Sham equations.

4.1 From Atoms to Molecules and Crystals

To solve the Kohn-Sham equations associated with a particular molecular or
bulk system in KSSOLV, we must first construct a Molecule object. Even though
a bulk system (such as a crystal) is physically different from a molecule, we cur-
rently do not make such a distinction in KSSOLV. Both systems are considered
periodic. In the case of a molecule, the periodicity is introduced by placing the
molecule in a fictitious supercell that is periodically extended.

To construct a Molecule object, we use

mol = Molecule();

to first create an empty object called mol (a user-defined variable name). This
call simply sets up the required data structure that is used to describe attributes
of mol.

Before mol can be used in subsequent calculations, we must initialize all of
its essential attributes, which include the number and type of atoms in this
molecule, the size and shape of the supercell that contains the molecule, etc.
All these attributes can be defined by using the set method associated with the
Molecule class. The syntax of the set function is

mol = set(mol,attrname,attrvalue);

where the input argument attrname is a predefined string associated with the
Molecule class that gives the name of a particular attribute, and attrvalue is
a user supplied quantity that will be stored in mol. Table II lists the essential
attributes that must be defined before the mol object can be used in subsequent
calculations.

Each molecule consists of a number of atoms. An atom is defined as an
Atom object using the Atom constructor and a parameter that denotes either its
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Fig. 3. The relative positions of all atoms in the SiH4 molecule.

chemical symbol or its atomic number. For example,

a = Atom(’Si’)

or

a = Atom(14)

defines a silicon atom object named a. The Atom constructor internally calcu-
lates the number of valence electrons (ne) and retrieves the shell configuration
through a table lookup that finds the electron orbitals associated with each
atom.

Atoms within a molecule can be placed in an array to form a list that is used
to specify the atomlist attribute of a Molecule object. For example, a silane
molecule contains one silicon (Si) atom and four hydrogen (H) atoms. After
declaring both the Si and H atoms through the commands

a1 = Atom(’Si’)
a2 = Atom(’H’)

we can form the atom list associated with this molecule by

alist = [a1; a2; a2; a2; a2].

The list can then be used to define the atomlist attribute of the mol object by

mol = set(mol,’atomlist’,alist).

To complete the description of the atomic configuration of a molecule, we must
also specify the spatial location of each atom. In KSSOLV, the 3D coordinates of
the atoms can be placed in an na × 3 matrix and passed to a Molecule object by
setting the xyzlist attribute. For example, the atomic coordinates associated
with the atoms in SiH4 shown in Figure 3 is set by using

xyzmat = [ 0 0 0
1.61 1.61 1.61

−1.61 −1.61 1.61
1.61 −1.61 −1.61

−1.61 1.61 −1.61 ];
mol = set(mol,’xyzlist’,xyzmat).

Each row of the xyzmat array gives the (x, y , z) coordinates (in atomic/Bohr
units) of the corresponding atom in the alist array defined above. Care must
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be taken in the input of these coordinates as KSSOLV does only a minimal
checking for physically reasonable coordinates.

In addition to physical properties of a molecule or bulk system, the definition
of a Molecule object in KSSOLV must also contain discretization information.
The two main attributes that affect the discretization of the molecular sys-
tem are the size and orientation of the supercell and the kinetic energy cutoff.
Although these attributes are not properties of the physical system, including
them in the Molecule class simplifies the construction of the Hamiltonian object
and subsequent calculations.

The supercell attribute defines the shape and size of the primitive or su-
percell that contains the basic atomic constituents of a crystal or molecule. In
KSSOLV, the supercell is described by a 3 × 3 matrix. Each column of this
matrix defines the direction and length of one particular edge of the cell (or a
translation vector) emanating from the origin. For example,

mol = set(mol,’supercell’,10*eye(3));

sets the supercell of mol to a 10 × 10 × 10 cube (in atomic units) whose three
edges are parallel to the x, y , and z axes, respectively.

The attribute ecut is used to specify the kinetic energy cutoff that deter-
mines the number of effective planewave basis functions (ng ) and spatial sam-
pling points (n1, n2 and n3) used in the discretization. A higher cutoff energy
leads to the use of a larger number of planewave basis functions and more spa-
tial sampling grid points. This often yields a more accurate finite-dimensional
approximation at the expense of higher computational cost. The optimal en-
ergy cutoff will depend on the molecular system being studied and the choice
of pseudopotentials used in the Hamiltonian.

4.2 The Hamiltonian Class

A properly defined Molecule object mol can be used to initialize the Kohn-Sham
Hamiltonian associated with this object. The initialization can be done by call-
ing the constructor

H = Hamilt(mol).

Although the Kohn-Sham Hamiltonian H(X ) is treated as a matrix in equa-
tion (25), it is not stored as a matrix in KSSOLV. Instead, the Hamilt class keeps
L, V̂ion and the total potential Vtot = V̂ion +Diag(L†ρ)+Diag(μxc(ρ)) as separate
attributes. This separation makes it easier to update the Hamiltonian in both
the SCF and the DCM calculations.

The kinetic component of a Hamilt object contains a compact representation
of the frequency vectors g j ( j = 1, 2, . . . , ng ) that satisfy (17). These frequency
vectors correspond to the nonzero diagonal elements of Dg in (22). The compact
representation stores both the numerical values of ||g j ||2 and their (x, y , z) lo-
cations in a full 3D representation. High-frequency vectors that do not meet the
criterion (17) are treated as zeros and never used when the kinetic component
of the Kohn-Sham Hamiltonian is applied to a wavefunction.
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The ionic potential V̂ion contains a local term that is constructed and stored
as a 3D array at initialization. The nonlocal portion of V̂ion is a low-rank linear
operator. In the frequency space, it can be represented as W W ∗ for some ng × �

(� � ng ) matrix W , where � is total number of relevant atomic orbitals (i.e., s,
p, d orbitals) associated with all atoms in the molecule object. The construc-
tion of both the local and nonlocal portions of the ionic potentials makes use
of the numerical procedure developed by Kleinman and Bylander [Kleinman
and Bylander 1982] to sum up the atomic pseudopotentials stored in the KS-
SOLV subdirectory Pseudopot. KSSOLV provides Troullier-Martins [Troullier
and Martins 1991] atomic pseudopotentials associated with most elements in
the first four rows of the periodic table as well as a few commonly used elements
in higher rows.

The determination of both the Coulomb and exchange correlation potential
requires the availability of the charge density ρ which is in turn a function of
the wavefunctions to be computed. Since a good approximation to the desired
wavefunctions is not available at initialization, the initial ρ is computed in
KSSOLV by combining atomic charge densities associated with each atom in
the mol object.

In addition to standard potentials that appear within the Kohn-Sham density
functional formalism, KSSOLV allows a user to specify other external potentials
that electrons may experience through the ’vext’ attribute of a Hamilt object.
All of these are stored internally as 3D arrays.

Once a Hamilt object has been defined, one can retrieve various attributes of
the object through the get function, for example,

vt = get(H,’vtot’);

returns the total potential from a Hamilt object named H and assigns it to a user
defined variable vt. This potential, which is stored as a MATLAB 3D array, can
be used and updated in a subsequent SCF or DCM calculation. An updated vt
can be passed back into H by using the set function

H = set(H,’vtot’,vt);

4.3 The Wavefunction Class

We created a special class Wavefun in KSSOLV to represent one or a set of wave-
functions. The creation of this class enables users to manipulate wavefunctions
as if they are vectors or matrices. Additionally, since by construction the wave-
functions are represented by planewaves whose frequencies satisfy (17), we can
use a compact data structure to reduce the cost of performing linear algebra
operations.

In KSSOLV, a Wavefun object can be constructed using either a noncompact
scheme or a compact scheme. In a noncompact representation, a Wavefun object
X can be constructed through the command

X = Wavefun(psi),

where psi is a MATLAB 3D array if X represents a single wavefunction, or a
cell array that contains a list of 3D arrays if X represents a set of wavefunctions.
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Under the compact scheme, a Wavefun object stores only the nonzero Fourier
expansion coefficients of a single wavefunction ψ(r) or a set of wavefunctions
{ψi(r)}ne

i=1. These coefficients are stored contiguously as a MATLAB cell array
of size ng by ne. Such a storage scheme makes linear algebra operations on X
more efficient. However, to perform 3D FFT operations on X, we must place these
coefficients in a 3D array. Hence, in the compact scheme, we must also record the
locations of these nonzero Fourier coefficients. Because the magnitude of each
nonzero Fourier coefficient is smaller than a cutoff frequency as determined
from (17), these coefficients lie within a sphere of a given radius in the 3D
Fourier space. In signal processing, functions whose Fourier coefficients satisfy
a constraint of the type (17) are called bandlimited functions. In KSSOLV, the
locations of the nonzero Fourier coefficients is stored in a separate array which
is labeled as the ’idxnz’ attribute of the object. The ’n1’, ’n2’, and ’n3’ attributes,
which gives the dimension of the wavefunction in real space, must be properly
set in this case before the object can be used in subsequent calculation.

In the following section, we will see that all major matrix operations have
been overloaded for Wavefun objects for both the compact and noncompact
schemes. KSSOLV also provides a utility function genX0 that allows one to
easily construct initial Wavefun objects for the SCF or DCM calculations. To
generate a set of random bandlimited wavefunctions using the kinetic energy
cutoff specified in a Molecule object mol, one can simply use the command

X = genX0(mol).

Converting a Wavefun object X to a 3D array (or a list of 3D arrays) is straight-
forward when X is constructed using a noncompact scheme. The following
command

X3D = get(X,’psi’)

returns the wavefunctions as a cell array X3D of 3D arrays. Although rarely
needed when using KSSOLV, the following lines of codes show how the same
conversion can be accomplished for an X constructed using a compact represen-
tation scheme

n1 = get(X, ’n1’);

n2 = get(X, ’n2’);

n3 = get(X, ’n3’);

psi = get(X, ’psi’);

idx = get(X, ’idxnz’);

X3D = zeros(n1, n2, n3);

X3D(idx) = psi1.

4.4 Operator Overloading

Because the Kohn-Sham Hamiltonian H(X ) and wavefunction X are viewed
as matrices in (25), it is desirable to allow Hamilt and Wavefun objects to be
manipulated in KSSOLV as if they are matrices. This feature is made possi-
ble in KSSOLV by overloading some basic algebraic operations for a Wavefun
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Table III. Overload Operations for Wavefun Objects in KSSOLV

Operations Description

x + y Add two wavefunctions

x - y Subtract one wavefunction from another

x * y Multiply two wavefunctions and return a matrix

x * a Multiply several wavefunctions with a matrix

x .* y Element-wise multiplication of two wavefunctions

x . y Element-wise division of two wavefunctions

x’ Complex conjugate transpose of a wavefunction

x.’ Transpose of a wavefunction

[x y] Horizontal concatenation of several wavefunctions

x(:,i:j) Subscripted reference of wavefunctions

object. These overloaded operations are listed in Table III. One should be careful
about the use of some of these operators. For example, since the wavefunctions
used in the SCF and DCM calculation all have the same dimension, the mul-
tiplication operator * is never used between two Wavefun objects except when
the first Wavefun object is transposed or conjugate transposed, that is, it is valid
to perform x’*y or x.’*y, and the multiplication returns a standard MATLAB
matrix object. The overloaded multiplication operator * for Wavefun objects al-
lows the second operand to be a standard matrix object with proper dimension.
The result of the multiplication is a Wavefun object.

The multiplication operator is also overloaded for the Hamilt class so that the
multiplication of a Hamilt object H and a Wavefun object X can be accomplished
in KSSOLV by a simple expression

Y = H*X,

which hides all the complexity of the operation from the user.

4.5 Solvers

KSSOLV provides implementations of both the SCF and DCM algorithms for
solving the Kohn-Sham equations. It also contains an implementation of the
LOBPCG [Knyazev 2001] algorithm that can be used to compute a few of the
smallest eigenvalues and the corresponding eigenvectors associated with a fixed
Hamiltonian. The names of these solvers and their functionality are briefly
described in Table IV.

These solvers serve two purposes. First, they allow users to solve the Kohn-
Sham equations associated with different atomistic systems and observe how
existing methods perform. In addition, they also provide templates for users to
base new algorithms on.

The simplest use of the scf and dcm functions are

[Etotvec, X, vtot, rho] = scf(mol)
[Etotvec, X, vtot, rho] = dcm(mol),

where mol is a Molecule object. Both of these functions return a vector of total
energy (Etotvec) values computed at each iteration, the final approximation to
the desired wavefunctions X, and the total potential vtot and charge density
rho associated with X. A number of optional parameters can be passed into
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Table IV. Solvers Provided in KSSOLV

Solver Description

scf.m An implementation of the SCF iteration with charge mixing.

dcm.m An implementation of the DCM algorithm without trust region.

trdcm1.m An implementation of a trust region enabled DCM algorithm with a fixed

trust region radius.

trdcm.m An implementation of a trust region enabled DCM algorithm with an adaptive

trust region radius.

lobpcg.m An implementation of the LOBPCG algorithm for computing approximations

to the smallest eigenvalues and the corresponding eigenvectors of a fixed

Hamiltonian. (It is used by scf.m.)

lanczos.m A simple implementation of the Lanczos algorithm with full orthogonalization.

chebyscf.m A simple implementation of a polynomial filtered SCF iteration proposed in

[Bekas et al. 2005; Zhou et al. 2006].

Table V. Parameters for SCF

Parameter Name Purpose Default

maxscfiter The maximum of SCF iterations allowed 10

scftol The convergence tolerance for SCF 10−6

cgtol The convergence tolerance for the LOBPCG algorithm 10−6

Used to solve the linear eigenvalue problem in SCF

maxcgiter The maximum number of LOBPCG iterations allowed 10

X0 The starting guess of the wavefunction Random

pulaymix Activation of the Pulay charge mixing “on”

kerkmix Activation of the Kerker charge mixing “on”

verbose Detailed diagnostic printout “on”

these functions to improve the efficiency of the computation or the quality of
the solution. The parameters used in scf are listed in Table V along with their
default values. A similar set of parameters for the dcm function can be found
in the user’s guide [Yang 2007]. These parameters can be reset by passing a
string-value pair as arguments to the scf or dcm function. For example,

[Etotvec, X, vtot, rho] = scf(mol,’pulaymix’,’off’);

turns off the Pulay charge mixing scheme in the SCF iteration.
By default, both the scf and dcm functions print out a list of diagnostic in-

formation on the screen. For example, Figure 4 shows the standard output
from the scf function, which includes eigenvalue approximations and residuals
of the linear eigenvalue problem computed at each LOBPCG iteration as well as
the approximate total energy, the 2-norm of each column of (25), and the differ-
ence between the input and output potentials computed at the end of each SCF
iteration. These intermediate output can be used to monitor the convergence of
the algorithm.

5. ALGORITHM DEVELOPMENT UNDER KSSOLV

The use of an object-oriented design in KSSOLV simplifies the process of al-
gorithm prototyping so that new algorithms can be implemented, tested, and
compared quickly. This is possible because many basic linear algebra opera-
tions can be applied directly to Hamilt and Wavefun objects. To give an exam-
ple, we will show how the DCM algorithm can be easily translated into the
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Fig. 4. SCF output.

MATLAB code shown in Figure 5. We should point out that the code segment
shown in Figure 5 is a simplified version of the dcm.m file included in KSSOLV.
The simplification is made to emphasize the main features of algorithm and its
implementation.

In this example, a Hamilt object H has been constructed during an initializa-
tion step which is not shown here. A set of wavefunctions contained in a Wavefun
object X has been created also. The code segment contained in the while loop
constitutes a single DCM iteration. In this version of the DCM implementa-
tion, a simple, iteration count-based termination criterion is used, that is, the
DCM iteration is terminated when the total number of DCM iterations reaches
a user-specified parameter maxdcmiter.

The first few lines of the codes within the while loop compute the precondi-
tioned and gradient of the Kohn-Sham total energy (projected onto the tangent
of the orthonormality constraint) with respect to the wave function X. They
correspond to Steps 3 and 4 in Figure 2. The preconditioner prec used here
is constructed using the techniques developed in Teter et al. [1989]. In ma-
trix notation, the preconditioner defined in Teter et al. [1989] is diagonal in the
frequency space. Thus it can be constructed as a Wavefun object, and the applica-
tion of prec to wavefunctions stored in R can be carried out using an overloaded
element-wise multiplication operation. The product is another Wavefun object.

We use the overloaded horizontal concatenation operator

Y = [X R];
if (iterdcm > 1) Y = [Y P]; end;
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Fig. 5. DCM in KSSOLV.

to construct the space spanned by wavefunctions contained in X, R and P. This
matches exactly with Step 5 in Figure 2.

The MATLAB code in Figure 5 illustrates how the Kohn-Sham Hamiltonian
is projected into the subspace spanned by wavefunctions contained in Y and
how the projected problem is solved in DCM. The kinetic and ionic potential
component of the Kohn-Sham Hamiltonian are projected outside of the inner
SCF for loop used to solve the projected problem defined in Step 7 of the DCM
algorithm. The function applyKIEP, which we do not show here, simply performs
the operation K Y = (L+ Vion)Y , where K Y is represented as a Wavefun object.
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Table VI. Setup Files for Examples Included in KSSOLV

Setup File Name nocc Description

c2h6 setup.m 7 An ethane molecule

co2 setup.m 8 A carbon dioxide molecule

h2o setup.m 4 A water molecule

hnco setup.m 8 An isocyanic acid molecule

qdot setup.m 8 An 8-electron quantum dot confined by external potential

si2h4 setup.m 6 A planar singlet silylene molecule

sibulk setup.m 6 A silicon bulk system

sih4 setup.m 4 A silane molecule

ptnio setup.m 43 A Pt2 Ni6 O molecule

pentacene setup.m 102 A pentacene (C22 H16) molecule

The overloaded Wavefun multiplication operator makes the calculation T =
Y ∗K Y and B = Y ∗Y extremely easy.

The projection of the Coulomb and exchange-correlation potential must be
done inside the inner SCF for loop because these nonlinear potentials change
as eigenvectors of the projected Hamiltonian Ĥ(G) defined in (32) are updated.
The projection is done by first computing V Y = [Diag(L†ρ)) + Diag(μxc(ρ))]Y
using the function applyNP (which we do not show here) and then performing
a Wavefunc multiplication to obtain Y ∗V Y . The projected nonlinear potential
is combined with the T matrix computed outside of the for loop to form the
projected Kohn-Sham Hamiltonian A.

Because the dimensions of A and B are relatively small, we can compute all
eigenvalues and the corresponding eigenvectors of the matrix pencil (A,B) in
each inner SCF iteration using MATLAB’s eig function. The returned eigen-
values and eigenvectors are sorted so that the leading nocc columns of G contain
the eigenvectors associated with the nocc smallest eigenvalues of (A,B). These
eigenvectors are used to update the wavefunctions X by multiplying Y with
G(:,1:nocc) using the overload wavefunction multiplication operator. These
calculations are followed by the update of the charge density rho as well as
the recalculation of the Coulomb and exchange-correlation potentials and en-
ergies. The new nonlinear potentials are then used to update the Hamiltonian
by calling the set function.

6. EXAMPLES

The KSSOLV toolbox includes a number of examples that can be used to ex-
periment with different algorithms implemented in KSSOLV. They can also be
used to test new methods for solving the Kohn-Sham equations. Each exam-
ple represents a particular molecule or bulk system. The system is created in
a setup file. Table VI shows the names of all setup files and a brief descrip-
tion for each of them. It also shows the number of occupied states (nocc) which
is simply the number of electron pairs for most systems (with the exception
of the quantum dot example in which electrons are not paired by their spin
orientations). To create a new system, a user can simply take one of the ex-
isting setup files and modify the construction of the Molecule object. KSSOLV
provides atomic information (e.g., the atomic shell configuration in terms of s,
p, d orbitals and the number of valence electrons etc.) and pseudopotentials
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Table VII. Comparing the Timing and Accuracy of Running SCF and

DCM in KSSOLV

System SCF Time DCM Time SCF Error DCM Error

C2 H6 26 25 9.4e-6 3.5e-6

CO2 26 23 3.1e-3 1.1e-4

H2 O 16 16 5.7e-5 2.2e-5

HNCO 34 32 7.4e-3 6.8e-5

Quantum dot 18 16 5.0e-3 3.7e-1

Si2 H4 25 23 1.8e-3 2.7e-4

Silicon bulk 15 15 3.0e-4 9.6e-6

SiH4 20 19 9.7e-6 4.9e-7

Pt2 Ni6 O 415 281 3.7 4.9e-2

Pentacene 887 493 5.2e-1 2.5e-2

associated with most elements in the first four rows of the periodic table as
well as a few commonly used elements in higher rows. It can be used to study
electronic properties of most small molecules (with up to a few hundred of
valence electrons), insulators, and semiconductor materials. For metals, a fi-
nite temperature formulation of the Kohn-Sham DFT model [Mermin 1965;
Weinert and Davenport 1992; Wentzcovitch et al. 1992], which has not been
implemented in current version of KSSOLV, must be used to generate phys-
ically meaningful results. We will add such a feature in the near future. In
general, to produce physically meaningful results, appropriate supercell size
and kinetic energy cutoff should be used. However, a user can experiment with
different choices of these parameters to examine changes in the convergence
properties of the numerical method or the quality of the computed solution in
KSSOLV.

Table VII shows that running an example shown in Table VI typically takes
less than a minute on a Linux workstation, with the exception of the Pt2Ni6O
and pentacene examples which took more than a few minutes to complete
10 SCF iterations. The timing results reported in the table were obtained on a
single 2.2-GHz AMD Opteron processor. We used MATLAB Version 7.6.0.324
(R2008a) for all experiments reported in this article. The total amount of mem-
ory available on the machine is 4 gigabytes (GB). A kinetic energy cutoff of 25
Ryd was used for most systems. For a 10×10×10 (atomic units) cubic supercell,
such a cutoff results in a 32 × 32 × 32 sampling grid for the wavefunctions. For
the Pt2Ni6O and the pentacene systems, the use of supercells requires the grid
sizes to be increased to 63×34×30 and 64×32×48, respectively. Moreover, be-
cause the number of electrons in these systems are relatively large (nocc = 43
for Pt2Ni6O and nocc = 102 for pentacene), these problems took more time to
solve.

The same initial guesses to the wavefunctions were used for both the SCF
and DCM runs. All runs reported in the table used the default parameters
in SCF and DCM. For example, in the case of SCF, the maximum number of
LOBPCG iterations for solving each linear eigenvalue was set to 10. In the case
of DCM, three inner SCF iterations were performed to obtain an approximate
solution to (32).
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Fig. 6. Setting up the Silane molecule.

The SCF and DCM errors reported in the last two columns of the table are
the residual norms defined as

error = ‖H(X )X − X ‖F ,

where X contains the wavefunctions returned from SCF or DCM and  =
X ∗H(X )X .

Table VII shows that DCM is faster than SCF for almost all systems. With the
exception of the quantum dot example, it also produces more accurate results.

We will now take a closer look at two specific examples that demonstrate
how KSSOLV can be used to solve the Kohn-Sham equations associated with
different types of systems and how the computed results can be examined,
compared, and visualized in the MATLAB envrionment.

6.1 The Silane Molecule

The simplest example included in KSSOLV is perhaps the SiH4 (silane) ex-
ample described in the sih4 setup.m. The setup file contains the code snippets
shown in Figure 6. These codes are used to construct a Molecule object for a
molecule that consists of a silicon atom and four hydrogen atoms. The geometry
configuration of these atoms is shown in Figure 3.

The overloaded display function for the Molecule class in KSSOLV allows
users to see various attributes of the mol object by simply typing mol on the
command line (without a semicolon at the end). Figure 7 shows the typical
information one would see after typing mol on the command line.
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Fig. 7. Displaying the attributes of the Silane molecule.

Fig. 8. Comparing the reduction of total energy in SCF and DCM for SiH4.

The convergence behavior associated with different algorithms can be eas-
ily visualized by plotting the history of total energy reduction Etotvec-Emin
where Emin is the minimum total energy computed by all methods. For example,
Figure 8 shows how the total energy changes at each SCF and DCM iteration.
We can clearly see from this figure that the reduction in total energy is more
rapid in DCM than in SCF for the silane system. Under the MATLAB envi-
ronment, a user can easily modify the scf or dcm function to record and plot
the change in total energy or Kohn-Sham residual norm with respect to either
CPU time or the number of matrix vector multiplications performed. Simi-
larly, we can compare the performance of the same algorithm with different
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Fig. 9. The effect of charge mixing in SCF.

Fig. 10. The computed charge density of the SiH4 molecule.

parameter settings quite easily also. Figure 9 shows the use of charge mixing
clearly accelerates the convergence of the SCF iteration.

For computational scientists, it is important to be able to examine the com-
puted solution visually so that they may gain new insights into physical prop-
erties of the atomistic system under study. The MATLAB visualization capa-
bilities make this task extremely easy. In Figure 10, we show the isosurface
rendering of the charge density rho returned from the scf function. This figure
is generated in MATLAB by using the command

isosurface(rho);
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Fig. 11. Setting up a four-electron quantum dot.

Fig. 12. Attributes of a four-electron quantum dot.

6.2 Electron Quantum Dot Confined by an External Potential

In addition to molecules and bulk systems, KSSOLV can be used to study the
properties of quantum dots that consist of only electrons confined by an external
potential field. The setup file qdot setup.mwhich we list in Figure 11 shows how
such a system can be created. Notice that no atomic information is needed in
the setup file. Instead, we specify the number of electrons and set the spin type
(spintype) to 2, which indicates that the wavefunction associated with each
electron is treated differently. The getVharmonic function used in the setup file
(which we do not show here) defines an external potential parameterized by a
parameter which is set to 1 in the setup file.

Figure 12 shows the attributes of the quantum dot when we type mol at the
MATLAB prompt. Notice that the atoms and coordinates attribute is set to
none. Figure 13 provides a partial listing of the output produced from running

[Etotvec, X, vtot, rho] = dcm(mol,’maxdcmiter’,50);

The output shows that the convergence of DCM algorithm appears to be slow
for this problem. In particular, the total energy changes very little from one
DCM iteration to another. In the last few DCM iterations, there is no discernible
change in total energy within the inner SCF iteration used to solve the projected
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Fig. 13. Output from applying DCM to a four-electron quantum dot.

problem. For this problem, the SCF iteration appears to be more effective as
we have already seen from Table VII.

7. CONCLUSIONS

We have described the design and implementation of KSSOLV, a MATLAB
toolbox for solving the Kohn-Sham equations. Planewave discretization is
used in KSSOLV because of its variational properties and simplicity. It is the
natural choice for building a MATLAB Kohn-Sham equation solver because
discrete Fourier transforms can be computed efficiently in MATLAB by its opti-
mized FFT functions. The standard pseudopotential technique is utilized in KS-
SOLV to reduce the number of electron wavefunctions to be computed and the
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number of planewave basis functions required to represent each wavefunction.
We should point out that planewave discretization does have some drawbacks
[Kronik et al. 2006]. In particular, for molecules, the size of the fictitious super-
cell has to be large enough so that the computed wavefunctions do not overlap
near the edge of the cell. However, these issues are not critical if one simply
intends to study the existing algorithms or develop new algorithms for solving
finite-dimensional Kohn-Sham equations.

One of the main features of the toolbox is the object-oriented design that
allows users to easily set up a physical atomistic system. Physical attributes
of the system are translated into numerical objects such as wavefunctions
and Hamiltonians in a transparent fashion. These objects can be easily ma-
nipulated using overloaded algebraic operations. As a result, the coding effort
required to investigate properties of the existing algorithms and to develop
new algorithms for solving the Kohn-Sham equations is reduced significantly
in KSSOLV. Furthermore, the visualization tools available in MATLAB enable
users to quickly examine the computed results and compare the performance
of different algorithms.

Some computational efficiency is sacrificed in KSSOLV to keep the object-
oriented interface simple. To reduce the number of loops, which are slow in
MATLAB, and replace them with vectorized operations (operations that can
be applied simultaneously to all elements of an array), additional arrays are
sometimes allocated to speed up the calculation. The presence of these arrays
tends to increase the amount of memory usage. A number of improvements are
being made to further reduce the memory and execution time required to con-
struct and manipulate a Kohn-Sham Hamiltonian and electron wavefunctions.
Alternative algorithms such as the Grassman manifold constrained total en-
ergy minimization scheme [Edelman et al. 1998] and the energy DIIS (EDIIS)
algorithm [Kudin et al. 2006] will also be included in KSSOLV in future releases
of the toolbox.

Because no parallelization has been implemented in the current version of
KSSOLV, the size of the atomistic system one can study is rather limited. Sys-
tems that contain more than one hundred atoms and configured with a large
energy cutoff and supercell will take a large amount of time to run. Nonetheless,
many computational experiments can already be performed on the examples
included in the package using the KSSOLV implementations of the SCF and
DCM algorithms. We believe a great deal can be learned from running the
existing codes on these examples.

Finally, because the atomic coordinates associated with each Molecule object
can be easily modified in KSSOLV, the package can be easily extended in the
future to facilitate structure relaxation (i.e., minimize the total energy with
respect to both the atomic positions and single-particle wavefunctions) and
ab initio molecular dynamics.
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