Generalized Pattern Search Methods for a Structure Determination Problem

Juan Meza
Lawrence Berkeley National Laboratory

http://hpcrd.lbl.gov/~meza

Supported by DOE/MICS

Low-Energy Electron Diffraction (LEED)

Low-energy electron diffraction pattern due to monolayer of ethylidyne attached to a rhodium (111) surface

- Goal is to determine surface structure through low energy electron diffraction (LEED)
- Inverse problem consists of minimizing the error between experiment and theory
- Combination of local/global optimization
- Contains both continuous and categorical variables
 - Atomic coordinates
 - Ni, Li
- Function not smooth; no derivatives available

Low Energy Electron Diffraction

Pendry R-factor

$$R = \frac{\sum_{g} \int (Y_{gth} - Y_{gexp})^2 dE}{\sum_{g} \int (Y_{gth}^2 + Y_{gexp}^2) dE},$$

$$Y(E) = L^{-1}/(L^{-2} + V_{oi}^2),$$

$$L(E) = I'(x, y, z)/I(x, y, z)$$

I = Intensity

Previous Work

- Previous work used genetic algorithms to solve the optimization method.
- Large number of invalid structures generated (more on this later).
- Overall, a solution was found - after adding sufficient constraints.

- Global Optimization in LEED Structure Determination Using Genetic Algorithms, R. Döll and M.A. Van Hove, Surf. Sci. 355, L393-8 (1996).
- A Scalable Genetic Algorithm Package for Global Optimization Problems with Expensive Objective Functions, G. S. Stone, M.S. dissertation, Computer Science Dept., San Francisco State University, 1998.

Brief overview of pattern search methods

- Pattern search methods, Torczon, Lewis & Torczon, Lewis, Kolda, Torczon (2004), etc.
- Extension to mixed variable problems by Audet and Dennis (2000).
- Case of nonlinear constraints studied in Abramson's PhD dissertation (2002).
- Good convergence properties
- Good software available APPSPACK (Kolda), OPT++ (Hough, Meza, Williams), NOMADm (Abramson)

Generalized Pattern Search Framework

- 1. Initialization: Given Δ_0 , x_0 , M_0 , P_0
- 2. For k = 0, 1, ...
 - a) SEARCH: Evaluate f on a finite subset of trial points on the mesh M_k
- Global phase can include user heuristics or surrogate functions
- b) POLL: Evaluate f on the frame P_k
- Local phase more rigid, but necessary to ensure convergence

3. If successful - mesh expansion:

a)
$$x_{k+1} = x_k + \Delta_k d_k$$

Otherwise contract mesh

NOMADm

- Variables can be continuous, discrete, or categorical
- General constraints (bound, linear, nonlinear)
 - Nonlinear constraints can be handled by either filter method or MADS-based approach for constructing poll directions
- Objective and constraint functions can be discontinuous, extended-value, or nonsmooth.
- Available at:

http://en.afit.edu/ENC/Faculty/MAbramson/NOMADm.html

Test problem

Ni(100)-(5x5)-Li

top view

- Model contains three layers of atoms
- Using symmetry considerations we can reduce the problem to 14 atoms
 - 14 categorical variables
 - 42 continuous variables
- Positions of atoms constrained to lie within a box
- Best known previous solution had R-factor = .24

Model 31 from set of TLEED model problems

GA results - categorical variable search with fixed atomic positions

Remark: population size = 10 / Generation

NOMAD results for categorical variables with fixed atomic positions

LEED Chemical Identity Search: Ni(100)-(5 × 5)-Li

NOMAD results for 20 trials using LHS + GSS

Minimization with respect to both types of variables removes coordinate constraints

LEED Chemical Identity Search: Ni (100)-(5x5)-Li

New structure found R = 0.1184

Previous best known solution R = 0.24

Conclusions

- Generalized pattern search methods for mixed variable problems were successful in solving the surface structure determination problem
 - On average NOMAD took 60 function evaluations versus 280 for previous solution (GA)
 - Improved solutions from previous best known solutions found in all cases
 - Generation of far fewer invalid structures
- Algorithm appears to be fairly robust, with a better structure found in all 20 trial points
- Ability to minimize with respect to both categorical and continuous variables a critical advantage for these types of problems

Acknowledgements

- Chao Yang
- Lin-Wang Wang
- Xavier Cartoxa
- Andrew Canning
- Byounghak Lee

Questions

