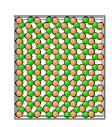
Derivative-Free Optimization Methods for a Surface Structure Determination Problem

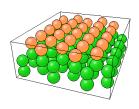
Juan C. Meza University of California, Merced

Applied Math Seminar October 7, 2016 UCM

Surface structure determination

- Surface structure determines many important properties of materials
- Possibility of electron diffraction first proposed by deBroglie (1924)
- Experimental data could not be quantitatively described by kinematic theory
- Over 40 years before electron diffraction became a tool in surface structure determination
- Necessitated the development of a theory of multiple scattering (late 1960s)



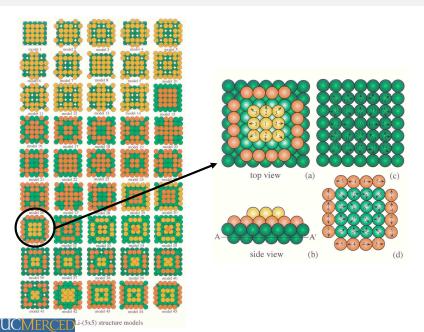


Low-energy electron diffraction (LEED)

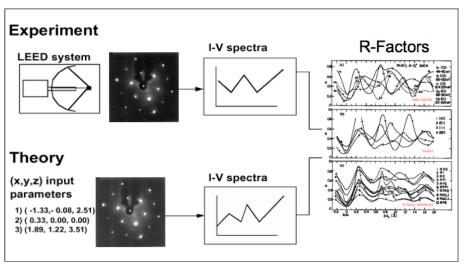


- Goal is to determine surface structure through low energy electron diffraction (LEED).
- Need to determine the coordinates and chemical identity of each atom.
- Ex: Li atoms on a Ni surface
- Low-energy electrons have high surface sensitive, requiring a well-ordered surface

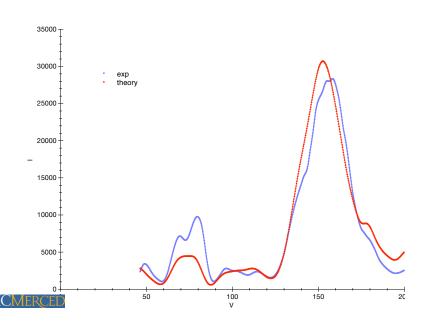
What is the correct atomic configuration?



Experimental setup



Example IV curve



Pendry Reliability-factor (1980)

 IV curves consist for the main part of a series of Lorentzian peaks (I is Intensity):

$$I \approx \sum \frac{a_j}{(E-E_i)^2 + V_{oi}^2}$$

- Pendry R-factor emphasizes positions of the peaks rather than the heights of the intensities
- Ideal agreement corresponds to R=0; uncorrelated spectra yields R=1.

$$L(E) = I'/I$$

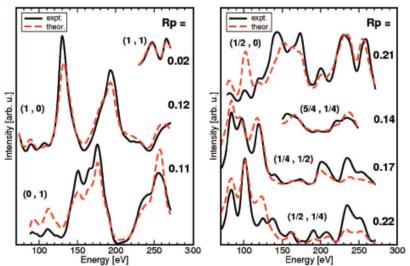
$$L \approx \sum_{i} \frac{-2(E - E_{i})}{(E - E_{i})^{2} + V_{oi}^{2}}$$

$$Y(E) = L/[1 + (LV_{oi})^{2}]$$

$$R = \frac{\sum_{i,g} (Y_{th} - Y_{exp})^{2}}{\sum_{i,g} (Y_{th}^{2} + Y_{exp}^{2})}$$

where g denotes one beamline and E_i is the energy.

R factors for various IV curves



Held, G., Low-energy electron diffraction crystallography of surfaces and interfaces. Bunsen-Magazin 12 (12), 2010. pp. 124–131.

General Optimization Formulation

min
$$f(x)$$
, $x \in \mathbb{R}^n$
 $h(x) = 0$
 $g(x) \ge 0$

For our problem:

- f(x) = R-factor, x are coordinates of the atoms
- Several ways of computing the R-factor, we will use the Pendry R-factor.
- Sometimes referred to as parameter estimation or inverse problem

Some standard assumptions

- Theoretical
 - Objective function is smooth
 - Derivatives are also "nice"
 - Constraints are linearly independent and smooth
- Practical
 - First and (sometimes) second derivatives are available
 - Objective and constraint functions are cheap to evaluate
 - Objective function has infinite (machine) precision

Let's check our assumptions

- Function may be discontinuous
- Invalid (unphysical) structures lead to function being undefined in certain regions and returning special values
- No derivatives available; Hessians even harder to compute
- Objective and constraint function evaluations take up a substantial total of run time
- Function is a result of a computer simulation fitted to experimental data, i.e. less than infinite precision

And just for fun let's also add

- Combination of continuous and categorical variables
 - Atomic coordinates: x, y, z
 - Chemical identity: Ni, Li

Previous Work

- ullet Early attempts used Hooke-Jeeves, nonlinear least squares, genetic algorithms $^{1-2}$
- Effective, but expensive
 - Several 100,000s of function calls typically needed
 - Each function call can take several minutes on a workstation class computer
- We have also used pattern search methods better, but still expensive

- Global Optimization in LEED Structure Determination Using Genetic Algorithms, R. Dll and M.A. Van Hove, Surf. Sci. 355, L393-8 (1996).
- 2 G. S. Stone, MS dissertation, Computer Science Dept., San Francisco State University, 1998.

What is a Pattern Search Method?

- Particular instance of Direct Search method methods that "in their heart" do not use gradient information, e.g. Nelder-Mead simplex (M. Wright, 1996).
- Can also be classified as a Generating Set Search method
- Main operation is function comparisons
- Useful whenever the derivative is not available or too expensive to compute, for example so called simulation-based optimization problems
- Unlike other DFO methods, these methods are strictly monotonic (vs. GA or SA)

General observations

- Use multiple search directions in such a way as to ensure at least one is a descent direction
- Makes the methods ideal for parallel computation
- Can use simple or sufficient decrease
- Never uses gradient in practice, but theory does require gradient be Lipschitz continuous or continuously differentiable

General Algorithm

```
Initialization: Given values \Delta_0, x_0, M_0, P_0,

1 For k=0,\ldots, maxit do
2 Search: Evaluate f on a finite subset of trial points on a mesh M_k.

3 Poll: Evaluate f on the frame P_k.

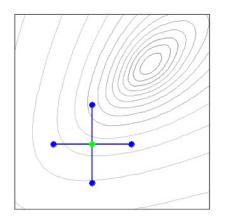
4 If (successful)

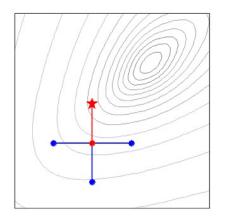
5 x_{k+1} = x_k + \Delta_k d_k

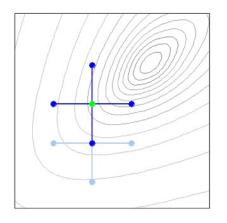
6 Update \Delta_k

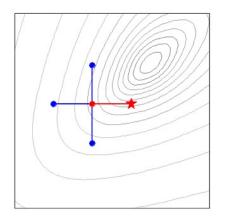
7 End
```

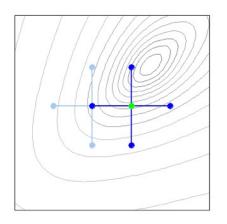
- Search phase can include user heuristics or surrogate functions
- Poll phase is more rigid, but needed to ensure convergence, i.e. sufficient descent directions.

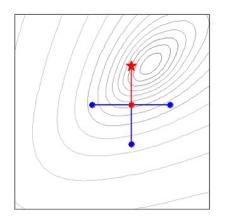


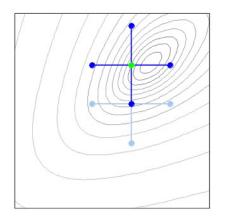


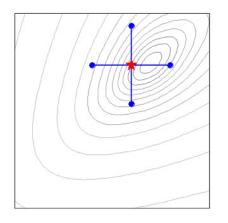


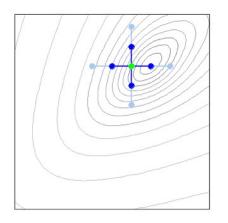


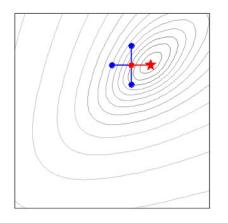












Global Convergence Properties, Part I

Generating Set Search (GSS) globalization strategies hinge on one key concept:

For all unsuccessful iterations

$$\lim_{k \to \infty} ||\Delta_k|| = 0$$

Various ways to produce such a sequence including

- sufficient decrease
 - rational lattices
 - moving grids

General assumptions mild including either f is bounded below or level sets are bounded.

Global Convergence Properties, Part II

If f(x) is suitably smooth (continuously differentiable) can show that

- \bullet For unsuccessful iterations, $||\nabla f(x_k)||$ is bounded as a function of the step length Δ_k
- ullet And since we can ensure $\liminf ||\Delta_k|| = 0$

Global Convergence

$$\liminf_{k \to \infty} ||\nabla f(x_k)|| = 0$$

N.B. We can prove stronger results under stricter conditions.

General Algorithm

```
Initialization: Given values \Delta_0, x_0, M_0, P_0,

For k=0,\ldots, maxit do

Search: Evaluate f on a finite subset of trial points on a mesh M_k.

Poll: Evaluate f on the frame P_k.

If (successful)

x_{k+1} = x_k + \Delta_k d_k

Update \Delta_k

Find
```

- Search phase can include user heuristics or surrogate functions
- Poll phase is more rigid, but needed to ensure convergence, i.e. sufficient descent directions.

Taking advantage of LEED

LEED

- Multiple scattering model
- I-V spectra computed repeatedly until best-fit structure is found
- Computation time is proportional to the number of parameters
- Most expensive of all methods

KLEED

- Assumes that electrons are only scattered once by the surface atoms.
- Agrees well with experimental data as long as the incident angle is close to perpendicular
- Surface unit cell size and symmetry can be determined, but not the exact positions
- Compared to multiple scattering, KLEED I-V spectra can be computed order of magnitude faster

Idea: Use KLEED as a simplified physics surrogate

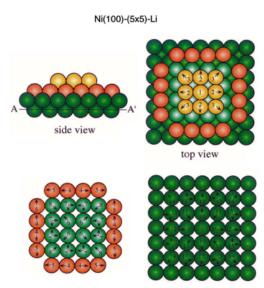
Building a better surrogate

- Define $\phi_A(x)=\phi_S+\phi_I$, where $\phi_A= \text{Additive surrogate}$ $\phi_S= \text{Simplified physics surrogate, e.g. KLEED}$ $\phi_I= \text{Interpolatory surrogate}$
- Interpolatory surrogate designed to capture difference between simplified physics and "true" function values

Search:

```
1 if (first search step) {
2    Initialize \phi_I with Latin Hypercube sample.
3 else {
4    recalibrate \phi_I with DACE model of \phi_S - f.
5    }
6    Construct \phi_A = \phi_S + \phi_I
7    Solve min \phi_A
```


Test problem

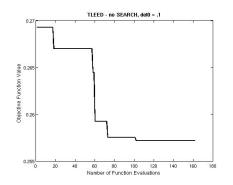


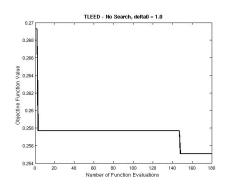
- Model 31 from set of model problem using three layers
 - 14 atoms
 - 14 categorical variables
 - 42 continuous variables
- Additional constraint added so that positions of atoms are constrained to lie within a box
- Used NOMADm (Abramson, Audet, Dennis, Le Digabel, Tribes)

Test cases

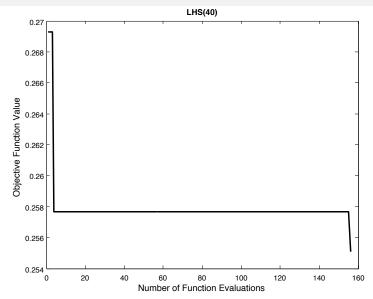
- Start with best known feasible point
- Continuous variables only
- Three different approaches
 - No search step
 - LHS search
 - Simplified physics surrogate (DACE model)

Optimization of continuous variables using no search phase

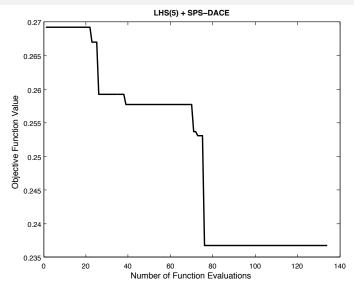




Optimization using LHS with 40 points



Optimization using additive surrogate, $\Delta_0 = 0.1$



Summary of numerical results

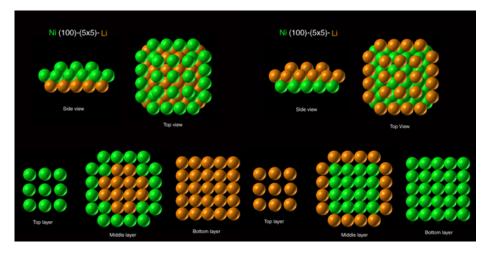
Method	LHS	$f(x^*)$	fevals
No search	0	0.2551	180
LHS	40	0.2551	160
SPS+DACE	15	0.2543	180
SPS+DACE	5	0.2354	135

Summary

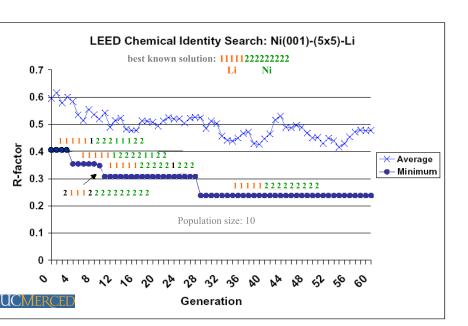
- Simulation-Based Optimization is an important and rapidly growing area of research
- Many standard assumptions do not apply for this class of problems great opportunity for new ideas and research
- Presented one example that used a combination of adapting old methods and taking advantage of structure
 - Total number of function evaluations decreased by about 20% per model
 - Room for improvement and new ideas, e.g. alternate interpolatory surrogates
 - Another direction is solving the full mixed variable problem

Questions?

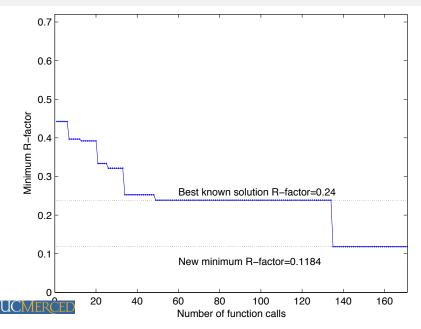
Future Work - Chemical Identity Search



GA with Chemical Identity



Pattern Search: Chemical Identity + Cont. Vars



Pendry Reliability-factor (1980)

$$R = \sum_{i,g} (Y_{gth} - Y_{gexp})^2 / \sum_{i,g} (Y_{gth}^2 + Y_{gexp}^2)$$

$$Y(E) = L/(1 + LV_{oi}^2)$$

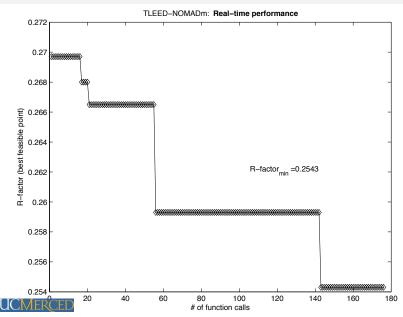
$$L(E) = I'/I$$

$$L \approx \sum_{i} \frac{-2(E - E_i)}{(E - E_i)^2 + V_{oi}^2}$$

Pendry R-factor

- LEED curves consist for the main part of a series of Lorentzian peaks: $I \approx \sum a_i/(E-E_i)^2 + V_{oi}^2$
- Their widths are dictated by the imaginary part of the electron self-energy (optical potential): $\Delta E = 2|V_{oi}|$
- Pendry R-factor emphasizes positions of the maximum and minimum rather than the heights of the intensities
- Ideal agreement corresponds to R=0; uncorrelated spectra yields R=1.

Optimization using additive surrogate, $\Delta_0 = 1.0$



Kinematic LEED

- KLEED assumes that electrons are only scattered once by the surface atoms.
- Agrees well with experimental data as long as the incident angle is close to perpendicular.
- Surface unit cell size and symmetry can be determined, but not the exact positions.
- Compared to multiple scattering which takes several minutes to compute, I-V spectra from KLEED can be computed in a few seconds.

Idea: Use KLEED as a simplified physics surrogate

Pendry Reliability-factor (1980)

 IV curves consist for the main part of a series of Lorentzian peaks (I is Intensity):

$$I \approx \sum \frac{a_j}{(E-E_j)^2 + V_{oi}^2}$$

- Pendry R-factor emphasizes positions of the peaks rather than the heights of the intensities
- Ideal agreement corresponds to R=0; uncorrelated spectra yields R=1.

$$L(E) = I'/I$$

$$L \approx \sum_{j} \frac{-2(E - E_{j})}{(E - E_{j})^{2} + V_{oi}^{2}}$$

$$Y(E) = L/[1 + (LV_{oi})^{2}]$$

$$R = \frac{\sum_{i,g} (Y_{gth} - Y_{gexp})^{2}}{\sum_{i,g} (Y_{gth}^{2} + Y_{gexp}^{2})}$$