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Surface structure determination

@ Surface structure determines many important
properties of materials

@ Possibility of electron diffraction first proposed
by deBroglie (1924)

@ Experimental data could not be quantitatively
described by kinematic theory

@ Over 40 years before electron diffraction
became a tool in surface structure
determination

@ Necessitated the development of a theory of
multiple scattering (late 1960s)
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Low-energy electron diffraction (LEED)

Goal is to determine surface
structure through low energy
electron diffraction (LEED).

Need to determine the
coordinates and chemical
identity of each atom.

Ex: Li atoms on a Ni surface

Low-energy electrons have high
surface sensitive, requiring a
well-ordered surface



What is the correct atomic configuration?

model 8
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Experimental setup

Experiment

LEED system

I-V spectra

Theory

(x,y,2) input
parameters

1) ( -1.33,- 0.08, 2.51)
2) ( 0.33, 0.00, 0.00)
3) (1.89, 1.22, 3.51)
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Example IV curve

35000+

30000~

25000~

20000~

15000

10000

5000~

exp
theory

50



Pendry Reliability-factor (1980)

@ |V curves consist for the main LE) = I'/I
part of a series of Lorentzian
peaks (I is Intensity):

INZ +V2

_2E - E))
L =~
; (E - EZ)2 + Vo2i

Y(E) = L/[1+ (LVy)?
@ Pendry R-factor emphasizes
positions of the peaks rather Zi,g(Y}h — Yewp)2
Tchan t'h.e heights of the ro= S (Yt% n }/ezzpp)
Intensities
o Ideal agreement corresponds to
R = 0; uncorrelated spectra
yields R = 1. where g denotes one beamline and Ej; is
the energy.



R factors for various IV curves
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General Optimization Formulation

min f(z), r e R"

For our problem:
o f(z) = R-factor, x are coordinates of the atoms

@ Several ways of computing the R-factor, we will use the Pendry

R-factor.
@ Sometimes referred to as parameter estimation or inverse problem



Some standard assumptions

@ Theoretical
o Objective function is smooth
o Derivatives are also "nice”
o Constraints are linearly independent and smooth
@ Practical
e First and (sometimes) second derivatives are available
o Objective and constraint functions are cheap to evaluate
o Objective function has infinite (machine) precision



Let's check our assumptions

@ Function may be discontinuous

@ Invalid (unphysical) structures lead to function being undefined in
certain regions and returning special values

@ No derivatives available; Hessians even harder to compute

@ Objective and constraint function evaluations take up a substantial
total of run time

@ Function is a result of a computer simulation fitted to experimental
data, i.e. less than infinite precision

And just for fun let's also add
@ Combination of continuous and categorical variables

e Atomic coordinates: x,y, z
o Chemical identity: Ni, Li



Previous Work

o Early attempts used Hooke-Jeeves, nonlinear least squares, genetic
algorithms! —2
o Effective, but expensive

e Several 100,000s of function calls typically needed
e Each function call can take several minutes on a workstation class
computer

@ We have also used pattern search methods — better, but still expensive

Global Optimization in LEED Structure Determination Using Genetic Algorithms, R. DIl and M.A. Van Hove, Surf. Sci.
355, L393-8 (1996).

e G. S. Stone, MS dissertation, Computer Science Dept., San Francisco State University, 1998.



What is a Pattern Search Method?

@ Particular instance of Direct Search method - methods that “in their
heart” do not use gradient information, e.g. Nelder-Mead simplex (M.
Wright, 1996).

@ Can also be classified as a Generating Set Search method
@ Main operation is function comparisons

@ Useful whenever the derivative is not available or too expensive to
compute, for example so called simulation-based optimization
problems

@ Unlike other DFO methods, these methods are strictly monotonic (vs.
GA or SA)



General observations

Use multiple search directions in such a way as to ensure at least one
is a descent direction

Makes the methods ideal for parallel computation

Can use simple or sufficient decrease

@ Never uses gradient in practice, but theory does require gradient be
Lipschitz continuous or continuously differentiable



General Algorithm

Initialization: Given values Ag, xg, My, Py,

For kK =0,...,maxit do
Search: Evaluate f on a finite subset of trial points on a mesh Mj,.
Poll: Evaluate f on the frame Py.
If (successful)
Tpy1 = Tp + Dpdy,
Update Ay
End

~NOoO Ok~ W N

@ Search phase can include user heuristics or surrogate functions

@ Poll phase is more rigid, but needed to ensure convergence, i.e.
sufficient descent directions.



Pattern Search D, = {4e;, +e,}
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Global Convergence Properties, Part |

Generating Set Search (GSS) globalization strategies hinge on one key
concept:

For all unsuccessful iterations

lim ||Ag|| =0
k—o0

Various ways to produce such a sequence including
o sufficient decrease

@ rational lattices

@ moving grids

General assumptions mild including either f is bounded below or level sets
are bounded.



Global Convergence Properties, Part |l

If f(x) is suitably smooth (continuously differentiable) can show that

@ For unsuccessful iterations, ||V f(zy)|| is bounded as a function of the
step length Ay

@ And since we can ensure liminf ||Ag|| =0

Global Convergence

liminf ||V f(zx)|| =0
k—ro0

N.B. We can prove stronger results under stricter conditions.



General Algorithm

Initialization: Given values Ag, xq, My, Py,

For kK =0,...,maxit do
Search: Evaluate f on a finite subset of trial points on a mesh Mj,.
Poll: Evaluate f on the frame Py.
If (successful)
Tpy1 = Tp + Dpdy,
Update Ay
End

~NOoO Ok~ W N

@ Search phase can include user heuristics or surrogate functions



Taking advantage of LEED

e LEED
e Multiple scattering model
o |-V spectra computed repeatedly until best-fit structure is found
o Computation time is proportional to the number of parameters
e Most expensive of all methods

e KLEED
o Assumes that electrons are only scattered once by the surface atoms.
o Agrees well with experimental data as long as the incident angle is

close to perpendicular

e Surface unit cell size and symmetry can be determined, but not the
exact positions

o Compared to multiple scattering, KLEED |-V spectra can be computed
order of magnitude faster

Idea: Use KLEED as a simplified physics surrogate



Building a better surrogate

@ Define pa(z) = ¢s + &1, where
¢4 =Additive surrogate
¢s =Simplified physics surrogate, e.g. KLEED
¢1 =lInterpolatory surrogate
@ Interpolatory surrogate designed to capture difference between
simplified physics and “true” function values

Search:

T it (first search step) {

2 Initialize ¢ with Latin Hypercube sample.
3 else {

4 recalibrate ¢; with DACE model of ¢g — f.
5 }

6  Construct ¢4 = ds + o7

7 Solve min ¢4




Test problem

Ni(100)-(5x5)-Li
@ Model 31 from set of model

problem using three layers
o 14 atoms
o 14 categorical variables
e 42 continuous variables

@ Additional constraint added
so that positions of atoms
top view are constrained to lie within

a box

e Used NOMADm (Abramson,

Audet, Dennis, Le Digabel,
Tribes)

side view
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Test cases

@ Start with best known feasible point
o Continuous variables only

@ Three different approaches

o No search step
o LHS search
o Simplified physics surrogate (DACE model)



Optimization of continuous variables using no search phase
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Optimization using LHS with 40 points

LHS(40)
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Optimization using additive surrogate, Ay = 0.1

LHS(5) + SPS-DACE
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Summary of numerical results

Method

LHS

f@)

fevals

No search
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180

LHS

40
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160
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15
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180
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135




Summary

@ Simulation-Based Optimization is an important and rapidly growing
area of research

@ Many standard assumptions do not apply for this class of problems —
great opportunity for new ideas and research
@ Presented one example that used a combination of adapting old
methods and taking advantage of structure
o Total number of function evaluations decreased by about 20% per
model
o Room for improvement and new ideas, e.g. alternate interpolatory
surrogates
e Another direction is solving the full mixed variable problem



Questions?
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GA with Chemical Identity

LEED Chemical Identity Search: Ni(001)-(5x5)-Li

best known solution: 11111222222222
0.7 4 Li Ni

N i,
0.5 x% m%‘%ﬂ)‘?ﬁk
11111122211122 W W

3
© 04
15 11111122221122 s Average
@ 11111222221222 L.
= —@- Minimum
iu_3,w
11111222222222
21112222222222 oo
0.2
Population size: 10
01
0 TTTTTTTTTTITI T T T I T T T T T T T T T T T T T T T T T T T I T T T T T I T T T T I T TTTTITTITTI I

S % B 0o D PP >RGPS

UCMERCED Generation




Pattern Search: Chemical ldentity + Cont. Vars
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Pendry Reliability-factor (1980)

R = Z( gth — gexp /Z th+ ge:vp)

1,9

Y(E) = L/(1+LVy")

LE) = I'/I

(@ Vi@



Pendry R-factor

LEED curves consist for the main part of a series of Lorentzian peaks:
I~3 a;/(E - Ej)*+V,;

@ Their widths are dictated by the imaginary part of the electron
self-energy (optical potential): AE = 2|V,,|

Pendry R-factor emphasizes positions of the maximum and minimum
rather than the heights of the intensities

Ideal agreement corresponds to R = 0; uncorrelated spectra yields
R=1.



Optimization using additive surrogate, Ay = 1.0

TLEED-NOMADmM: Real-time performance
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Kinematic LEED

o KLEED assumes that electrons are only scattered once by the surface
atoms.

o Agrees well with experimental data as long as the incident angle is
close to perpendicular.

@ Surface unit cell size and symmetry can be determined, but not the
exact positions.

@ Compared to multiple scattering which takes several minutes to
compute, |-V spectra from KLEED can be computed in a few seconds.

|dea: Use KLEED as a simplified physics surrogate



Pendry Reliability-factor (1980)

@ |V curves consist for the main
part of a series of Lorentzian
peaks (I is Intensity):

a
I~ J
Z(E_Ej)2+V()2i

@ Pendry R-factor emphasizes
positions of the peaks rather
than the heights of the
intensities

o ldeal agreement corresponds to
R = 0; uncorrelated spectra
yields R = 1.

L(E) = I'/I
B —2(E — E;)
LE L monpen
Y(E) = LJ[1+(LVy)?
R — Zi,g(Ygth_Ygewp)z

Zi,g (Ythh + Yg%xp)
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