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Surface structure determination

Surface structure determines many important
properties of materials

Possibility of electron di↵raction first proposed
by deBroglie (1924)

Experimental data could not be quantitatively
described by kinematic theory

Over 40 years before electron di↵raction
became a tool in surface structure
determination

Necessitated the development of a theory of
multiple scattering (late 1960s)



Low-energy electron di↵raction (LEED)

Goal is to determine surface
structure through low energy
electron di↵raction (LEED).

Need to determine the
coordinates and chemical
identity of each atom.

Ex: Li atoms on a Ni surface

Low-energy electrons have high
surface sensitive, requiring a
well-ordered surface



What is the correct atomic configuration?



Experimental setup



Example IV curve
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Pendry Reliability-factor (1980)

IV curves consist for the main
part of a series of Lorentzian
peaks (I is Intensity):
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Pendry R-factor emphasizes
positions of the peaks rather
than the heights of the
intensities

Ideal agreement corresponds to
R = 0; uncorrelated spectra
yields R = 1.
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where g denotes one beamline and Ei is

the energy.



R factors for various IV curves

Held, G., Low-energy electron di↵raction crystallography of surfaces and interfaces. Bunsen-Magazin 12 (12), 2010. pp.
124–131.



General Optimization Formulation

min f(x), x 2 R

n

h(x) = 0

g(x) � 0

For our problem:

f(x) = R-factor, x are coordinates of the atoms

Several ways of computing the R-factor, we will use the Pendry
R-factor.

Sometimes referred to as parameter estimation or inverse problem



Some standard assumptions

Theoretical
Objective function is smooth
Derivatives are also ”nice”
Constraints are linearly independent and smooth

Practical
First and (sometimes) second derivatives are available
Objective and constraint functions are cheap to evaluate
Objective function has infinite (machine) precision



Let’s check our assumptions

Function may be discontinuous

Invalid (unphysical) structures lead to function being undefined in
certain regions and returning special values

No derivatives available; Hessians even harder to compute

Objective and constraint function evaluations take up a substantial
total of run time

Function is a result of a computer simulation fitted to experimental
data, i.e. less than infinite precision

And just for fun let’s also add

Combination of continuous and categorical variables
Atomic coordinates: x, y, z
Chemical identity: Ni, Li



Previous Work

Early attempts used Hooke-Jeeves, nonlinear least squares, genetic
algorithms1�2

E↵ective, but expensive
Several 100,000s of function calls typically needed
Each function call can take several minutes on a workstation class
computer

We have also used pattern search methods – better, but still expensive

1 Global Optimization in LEED Structure Determination Using Genetic Algorithms, R. Dll and M.A. Van Hove, Surf. Sci.
355, L393-8 (1996).

2 G. S. Stone, MS dissertation, Computer Science Dept., San Francisco State University, 1998.



What is a Pattern Search Method?

Particular instance of Direct Search method - methods that “in their
heart” do not use gradient information, e.g. Nelder-Mead simplex (M.
Wright, 1996).

Can also be classified as a Generating Set Search method

Main operation is function comparisons

Useful whenever the derivative is not available or too expensive to
compute, for example so called simulation-based optimization
problems

Unlike other DFO methods, these methods are strictly monotonic (vs.
GA or SA)



General observations

Use multiple search directions in such a way as to ensure at least one
is a descent direction

Makes the methods ideal for parallel computation

Can use simple or su�cient decrease

Never uses gradient in practice, but theory does require gradient be
Lipschitz continuous or continuously di↵erentiable



General Algorithm

Initialization: Given values �0, x0,M0, P0,

1 For k = 0, . . . ,maxit do
2 Search: Evaluate f on a finite subset of trial points on a mesh M

k

.
3 Poll: Evaluate f on the frame P

k

.
4 If (successful)
5 x

k+1 = x

k

+�
k

d

k

6 Update �
k

7 End

Search phase can include user heuristics or surrogate functions

Poll phase is more rigid, but needed to ensure convergence, i.e.
su�cient descent directions.



Pattern Search
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Global Convergence Properties, Part I

Generating Set Search (GSS) globalization strategies hinge on one key
concept:

For all unsuccessful iterations

lim
k!1

||�
k

|| = 0

Various ways to produce such a sequence including

su�cient decrease

rational lattices

moving grids

General assumptions mild including either f is bounded below or level sets
are bounded.



Global Convergence Properties, Part II

If f(x) is suitably smooth (continuously di↵erentiable) can show that

For unsuccessful iterations, ||rf(x
k

)|| is bounded as a function of the
step length �

k

And since we can ensure lim inf ||�
k

|| = 0

Global Convergence

lim inf
k!1

||rf(x
k

)|| = 0

N.B. We can prove stronger results under stricter conditions.



General Algorithm

Initialization: Given values �0, x0,M0, P0,

1 For k = 0, . . . ,maxit do
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Search phase can include user heuristics or surrogate functions

Poll phase is more rigid, but needed to ensure convergence, i.e.
su�cient descent directions.



Taking advantage of LEED

LEED
Multiple scattering model
I-V spectra computed repeatedly until best-fit structure is found
Computation time is proportional to the number of parameters
Most expensive of all methods

KLEED
Assumes that electrons are only scattered once by the surface atoms.
Agrees well with experimental data as long as the incident angle is
close to perpendicular
Surface unit cell size and symmetry can be determined, but not the
exact positions
Compared to multiple scattering, KLEED I-V spectra can be computed
order of magnitude faster

Idea: Use KLEED as a simplified physics surrogate



Building a better surrogate

Define �

A

(x) = �

S

+ �

I

, where

�

A

=Additive surrogate

�

S

=Simplified physics surrogate, e.g. KLEED

�

I

=Interpolatory surrogate

Interpolatory surrogate designed to capture di↵erence between
simplified physics and “true” function values

Search:
1 if (first search step) {
2 Initialize �

I

with Latin Hypercube sample.
3 else {
4 recalibrate �

I

with DACE model of �
S

� f .
5 }
6 Construct �

A

= �

S

+ �

I

7 Solve min �

A



Test problem

Model 31 from set of model
problem using three layers

14 atoms
14 categorical variables
42 continuous variables

Additional constraint added
so that positions of atoms
are constrained to lie within
a box

Used NOMADm (Abramson,
Audet, Dennis, Le Digabel,
Tribes)



Test cases

Start with best known feasible point

Continuous variables only

Three di↵erent approaches
No search step
LHS search
Simplified physics surrogate (DACE model)



Optimization of continuous variables using no search phase



Optimization using LHS with 40 points
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Optimization using additive surrogate, �0 = 0.1
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Summary of numerical results

Method LHS f(x⇤) fevals
No search 0 0.2551 180
LHS 40 0.2551 160
SPS+DACE 15 0.2543 180
SPS+DACE 5 0.2354 135



Summary

Simulation-Based Optimization is an important and rapidly growing
area of research

Many standard assumptions do not apply for this class of problems –
great opportunity for new ideas and research

Presented one example that used a combination of adapting old
methods and taking advantage of structure

Total number of function evaluations decreased by about 20% per
model
Room for improvement and new ideas, e.g. alternate interpolatory
surrogates
Another direction is solving the full mixed variable problem



Questions?



Future Work – Chemical Identity Search



GA with Chemical Identity



Pattern Search: Chemical Identity + Cont. Vars
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Pendry Reliability-factor (1980)
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Pendry R-factor

LEED curves consist for the main part of a series of Lorentzian peaks:
I ⇡
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Their widths are dictated by the imaginary part of the electron
self-energy (optical potential): �E = 2|V

oi

|
Pendry R-factor emphasizes positions of the maximum and minimum
rather than the heights of the intensities

Ideal agreement corresponds to R = 0; uncorrelated spectra yields
R = 1.



Optimization using additive surrogate, �0 = 1.0
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Kinematic LEED

KLEED assumes that electrons are only scattered once by the surface
atoms.

Agrees well with experimental data as long as the incident angle is
close to perpendicular.

Surface unit cell size and symmetry can be determined, but not the
exact positions.

Compared to multiple scattering which takes several minutes to
compute, I-V spectra from KLEED can be computed in a few seconds.

Idea: Use KLEED as a simplified physics surrogate



Pendry Reliability-factor (1980)

IV curves consist for the main
part of a series of Lorentzian
peaks (I is Intensity):
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Pendry R-factor emphasizes
positions of the peaks rather
than the heights of the
intensities

Ideal agreement corresponds to
R = 0; uncorrelated spectra
yields R = 1.

L(E) = I

0
/I

L ⇡
X

j

�2(E � E

j

)

(E � E

j

)2 + V

2
oi

Y (E) = L/[1 + (LV
oi

)2]

R =

P
i,g

(Y
gth

� Y

gexp

)2
P

i,g

(Y 2
gth

+ Y

2
gexp

)


	Motivation
	Formulation
	Numerical Results
	Summary

