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Optimization problems arise in a wide variety 
of applications



Target problem was parameter identification 
for extreme UV light source model
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� Find model parameters, 
satisfying some bounds, 
for which the simulation 
matches the observed 
temperature profiles

� Computing objective 
function requires running 
thermal analysis code



Z-Pinch Machine: matching simulations with 
experiments

Goals:
� Improved models of the 

Z-machine
� Optimize new designs

Current Focus:
�Methods for design 

with uncertainty

Wire Array for Z-machine

Wire Initiation Load Implosion Load Stagnation 



Developing New Drugs: an energy 
minimization problem

� A single new drug may 
cost over $500 million 
to develop and the 
design process typically 
takes more than 10 
years

� There are thousands of 
parameters and 
constraints

� There are thousands of 
local minima

Docking model for environmental carcinogen bound 
in Pseudomonas Putida cytochrome P450



Example: Model-based Safety Assessments

� Problem: model 
accident scenarios to 
determine the worst-
case response

� Challenges:
� Simulation of coupled 

sub-systems 
� Need a family of 

solutions
� Characterize 

uncertainty in design 
safety



We have chosen to focus on particular 
classes of nonlinear optimization problems

� Expensive function evaluations 
» CPU time is measured in hours (even on parallel 

computers)
� Variable digits of accuracy

» Usually a result of solving a PDE
� Gradient information is (usually) not available
� Small dimensional

» Number of variables ~ 10 - 100



Schnabel (1995) identified three levels for 
introducing parallelism into optimization

1. Parallelize evaluation of functions, gradients, and or 
constraints

2. Parallelize linear algebra

3. Parallelize optimization algorithm at a high level



Basic idea is to solve a nonstandard 
Trust-Region subproblem using PDS (TRPDS)
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� Fast convergence 
properties of 
Newton method

� Good global 
convergence 
properties of trust 
region approach

� Inherent parallelism 
of PDS

� Ability to handle 
noisy functions



General statement of TRPDS algorithm

Given x0, g0, H0, G0, and K
for k=0,1, … until convergence do

1. Solve HksN = -gk

for i=0, 1, … until step accepted do

2. Form initial simplex using sN

3. Compute s that approximately minimizes f(xk + s),    subject to 
trust region constraint

if ared/pred > K then

5. Set xk+1 = xk + s; Evaluate gk+1, Hk+1

endif

6. Update G
end for

end for
A Class of Trust Region Methods for Parallel Optimization, P.D. Hough and J.C. Meza, 
to be published in SIAM Journal on Optimization



Convergence of TRPDS follows from theory 
of Alexandrov, Dennis, Lewis, and Torczon (1997)

� Assume
» Function uniformly continuously differentiable and bounded 

below; Hessian approximations uniformly bounded

» Approximation model satisfies the following conditions:

1. a(xk)  =  f(xk)
2.�a(xk)  =  �f(xk)

» Steps satisfy fraction of Cauchy decrease condition
� Then

» lim inf  || �f(xk) || = 0
k of



An application of TRPDS to the optimization 
of the performance of LPCVD furnaces

Heater zones

Silicon wafers 
(200 mm dia.)

Thermocouple

Quartz pedestal

� Temperature uniformity 
is critical
» between wafers
» across a wafer

� Independently controlled 
heater zones regulate 
temperature

� Wafers are radiatively 
heated



Computing the objective function requires 
the solution of a PDE

� Finding temperatures involves 
solving a heat transfer problem 
with radiation

� Two-point boundary value 
problem solved by finite 
differences

� Adjusting tolerances in the PDE 
solution trades off noise with 
CPU time
» Larger tolerances lead to

– Less accurate PDE solutions

– Less time per function 
evaluation



The goal is to find heater powers that yield 
optimal uniform temperature
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TRPDS becomes more competitive with 
standard methods as accuracy decreases
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BFGS may not converge when simulations 
have fewer digits of accuracy

Wafer Temperatures for Optimal Powers Obtained by BFGS
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TRPDS is more robust than standard methods 
when we have fewer digits of accuracy

Wafer Temperatures for Optimal Powers Obtained by TRPDS
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Why Uncertainty Quantification?

"As far as the laws of mathematics refer to 
reality, they are not certain; and as far as they 
are certain, they do not refer to reality"

Albert Einstein



Major goal is to develop new techniques for 
quantifying uncertainty in computer 
simulations

� Develop fast algorithms 
for computing uncertainty 
(error bars) in simulation 
results

� Implement parallel 
versions of algorithms

� Coordinate efforts with 
other UQ projects: 
Sphynx, DDace, OPT++, 
Dakota



EUVL Lamp model and experimental data
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This optimization problem requires intensive 
computational resources

� Objective function 
consists of computing the 
maximum temperature 
difference over all 5 
curves

� Each simulation requires 
approximately 7 hours on 
1 processor

� The objective function 
has many local minima



Types of questions we would like to ask

� Which parameters are the “most important”?
� How sensitive are the simulation results to the 

parameters?
� Can we quantify the variability of our simulation 

results?
� For a given confidence interval how many 

simulations runs do I need to run?
� Can I build a reduced model that approximates the 

simulation?
� .......



Statistical analysis can yield insight into the 
behavior of the simulation

DDace results of LHS on the 
EUVL lamp model

Mean and standard deviation of 
simulation results holding all but one 
parameter fixed



Global Sensitivity Analysis



Pearson’s correlation ratio can be used as a measure 
of importance of a subset of the parameters

� Compute Pearson correlation ratio:
Corr = V(ys)/V(y)

V(y) = model prediction variance of y=model(x)
V(ys) = restricted model prediction variance of ys=E(y|xs), the 

model prediction based on the parameter subset xs.
� McKay et al 0th-iteration estimate of Pearson 

correlation ratio:
Corr(xj) =SSB0/SST0

x2
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Unity Correlation Space

¦¦¦¦
    

x � � 
I

i

J

j
ij

I

i

J

j
i yySSTyySSB

1 1

2

1 1

2 )(0)(0

¦¦¦
   

x   
I

i

J

j
ij

J

j
iji y

IJ
yy

J
y

1 11

11



For the EUVL model, correlation ratios suggest 
that parameters 2 and 6 are more important

Correlation Mean Standard Deviation Sensitivity
x1 0.12 14.60 0.01 5.70E-06
x2 0.37 18.60 1.10 5.30E-06
x3 0.17 15.70 1.55 7.20E-07
x4 0.14 14.70 0.79 1.10E-05
x5 0.12 14.60 0.01 4.10E-04
x6 0.39 16.80 3.18 7.20E-06
x7 0.10 14.60 0.02 4.60E-05

x2 = heat flux to rear electrode
x6 = conductivity of contact 3



Model reduction captures trends but not 
variability

DDace/Coyote output results 
of EUVL model

MARS (Multi-variate Additive 
Regression Splines) response 
surface



A Taste of Things to Come



The objective function is still offering us 
many challenges

� Some of the optimization 
parameters are well-
behaved - others exhibit 
nastier behavior

� Computation of finite-
difference gradients can 
be tricky

� Main effects analysis can 
be used to restrict the 
parameter space of 
interest



OShI – Overlap Shortfall Index

� OShI is an index between 
0 and 1.  The closer to 1, 
the greater the overlap of 
the simulation and data 
ranges.

� OShI measures how well 
simulation output matches 
experimental data.

� OShI is also a 
mathematical measureExperimental Data vs. DDACE Simulation Results 

on EUVL Lamp Model



Summary and Future Work

� New class of parallel optimization methods
» Parallelism of pattern search combined with the good 

convergence properties of Newton methods
» Competitive with standard methods

� Greater robustness in applications that contain 
variable accuracy objective functions

� Develop methods for handling uncertainty in models 
and algorithm



The End



Summary

� UQ tools already 
being applied to 
some prototype 
problems

� UQ will help analysts 
make better 
decisions in the face 
of uncertainty

� Working towards 
more effective and 
easy to use decision 
support tools
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Stochastic Response Surface

� Use Polynomial Chaos Expansions to construct a 
Stochastic Response Surface (SRS)

� Compare Response Surface Models:
» MARS (currently in DDACE)
» SSANOVA (R statistical package library)
» Kriging (new capability to be added to DDACE)
» SRS (new capability to be added to DDACE)



What we really need is a measure of the 
variability in the simulation

� Develop scalable 
algorithms for 
computing uncertainty 
in simulation results

� Develop optimization 
methods that take 
uncertainty into 
account

� Implement both into 
software toolkits

DDace results on EUVL model with 256 LHS run



The ASCI V&V Program is the main driver 
for this project

�The V&V  vision was stated as follows:

“Establish confidence in the simulations supporting the Stockpile 

Stewardship Program through systematic demonstration and 

documentation of the predictive capability of the codes and their 

underlying models.” 

� The V&V Level 1 milepost states:

“Demonstrate initial uncertainty quantification assessments of 

ASCI nuclear and nonnuclear simulation codes.”



DDACE is a software package for designing 
computer experiments and analyzing the results

� Wide variety of 
distributions and 
sampling techniques

� Techniques for 
determining main 
effects

� DDACE integrated with 
IDEA and Dakota

� Parallel and serial 
versions

� XML interface



Current capabilities of DDace

� A collection of popular sampling strategies
» Random 
» Full Factorial
» Latin Hypercube
» Orthogonal arrays (OA)
» OA-based Latin hypercube
» User-defined sampling strategy
» Capability to generate function approximations using 

Multivariate Additive Regression Splines (MARS)
� Parallel and serial versions
� XML interface, GUI under development



Some Definitions

� Variability – inherent variation associated with the physical 
system under consideration

� Uncertainty – a potential deficiency in any phase or activity 
of the modeling process that is due to lack of knowledge

� Sensitivity Analysis – estimates changes to output with 
respect to changes of inputs

� Uncertainty Analysis – quantifies the degree of confidence 
in existing data and models



Must determine computation error HA using 
only computed function values

� Use difference table � Compute error at kth

difference

� Errors begin to converge

� Also
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Optimization algorithms can take advantage 
of sensitivity information

� Computing sensitivities requires a little bit of 
error analysis…
» Use centered differences on residuals

» Truncation and computation yields error

» Find the step size h that minimizes error
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Extreme Ultraviolet Lithography

Current EUVL Lamp



The model problem was taken from an EUVL 
design problem

� Find model parameters, 
satisfying some bounds, for 
which the simulation 
matches the observed 
temperature profiles

� Objective function 
consisted of computing the 
maximum temperature 
difference over all 6 
curves.

� Each simulation required 
approximately 7 hours on 1 
processor of Cplant.
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