

Juan Meza, Ali Pinar, Bernard Lesieutre, Vaibhav Donde Lawrence Berkeley National Laboratory

Power blackouts are a global problem

- August 2003 blackout affected 50 million people in New York, Pennsylvania, Ohio, Michigan, Vermont, Massachusetts, Connecticut, New Jersey, Ontario.
- The time to recover from the blackout was as long as 4 days at an estimated cost of \$4-10 B
- Similar occurrences elsewhere: Brazil (1999),
 France-Switzerland-Italy (2003)

Investigation of Aug. 14, 2003 Blackout

- Consortium for Electric Reliability Technology Solutions (CERTS) coordinated/staffed initial fact-finding field investigations
- J. Eto (LBNL) appointed to Electric Systems Working Group
 - Organized/conducted technical workshops
 - □ Staffed technical analysis teams (Root Cause, Frequency, Data Warehousing)
- ❖ Recommendation 13:
 - DOE should expand its research programs on reliability related tools and technologies

The power grid is increasingly vulnerable as the complexity of the system grows

Northeast blackout started with three broken lines.

- Problem: the current standard requires the system to be resilient to only one failure, because higher standards are not enforceable.
- Goal: develop computational methods that
 - detect vulnerabilities of the power network
 - determine how to update the system to increase security
 - scale and are widely applicable
- Challenge: requires combinatorial and nonlinear optimization
 - NP-hard
 - large-scale problems

Graphical representation of a blackout

- Blackout corresponds to infeasibility of power flow equations.
- Cascading is initiated by a significant disturbance to the system.
- Our focus is detecting initiating events and analyzing the network for vulnerabilities.

Vulnerability analysis viewed as a bi-level optimization problem

- Add integer (binary) line parameters, γ, to identify broken lines
- Measure the blackout severity as the distance to feasibility boundary
- Goal:
 - cut minimum number of lines so that
 - the shortest distance to feasibility (i.e. severity) is at least as large as a specified target

This approach leads to a Mixed Integer Nonlinear Program (MINLP)

$\min_{\mu_1,\mu_2,\mu_3,\mu_4,\mu_5}$

 $\lambda, z, \theta, \mu_1, \mu_2, \mu_3, \mu_4, \mu_5, \mu_6$ S.t.

 $|\lambda|$

$$F(AD(1-\gamma),\theta,p+z) = 0$$

$$-\pi/2 \le AD(1-\gamma)\theta \le \pi/2$$

$$-e^{T}z_{g} \ge S$$

$$0 \le p_g + z_g \le p_g$$

$$p_l \le p_l + z_l \le 0$$

$$\begin{pmatrix} -e \\ 0 \end{pmatrix} - \begin{pmatrix} \lambda_g \\ \lambda_l \end{pmatrix} + \begin{pmatrix} \mu_4 - \mu_3 \\ \mu_2 - \mu_1 \end{pmatrix} = 0^{-1}$$

$$\lambda^{T} \frac{\partial F}{\partial \theta} + A^{T} D (1 - \gamma) (\mu_{6} - \mu_{5}) = 0$$

$$\mu_1 z_l = 0; \quad \mu_2(p_l + z_l) = 0$$

$$\mu_4 z_g = 0; \quad \mu_3 (p_g + z_g) = 0;$$

$$\mu_5(\pi/2+AD(1-\gamma)\theta)=0;$$

$$\mu_6(\pi/2-AD(1-\gamma)\theta)=0;$$

$$\mu_1, \dots, \mu_6 \ge 0$$

$$\gamma \in \{0,1\}$$

minimize number of lines cut

feasible power flow

severity above threshold

feasible load shedding

satisfy the KKT optimality conditions

Relaxed model - pictorially

- Feasibility boundary moves as lines fail.
- Relaxed model: lines "partially" fail.
- Benefits:
 - Operating point now lies exactly on the feasibility boundary
 - Transforms the mixedinteger problem (difficult) into a continuous one (easier).

Relaxation works on small problems

IEEE 30-Bus System

- Four candidate lines identified.
- Two are sufficient to cause a blackout.
- Failure of these lines can cause a blackout with 843 MW loss out of a total load of 1655 MW).
- Solutions found using SNOPT.

.... but not on larger problems

Better solutions exist

IEEE 118 Bus System

Computational Issues/Challenges

- The problem involves integer variables (need to employ relaxation).
- Nonlinear/nonconvex optimization problem leads to issues with local minima.
- Scalability large scale systems pose a challenge due to increased computational burden and nonlinear optimization.
- The final solution and convergence is sensitive to initial conditions.

Exploiting the combinatorial structure

- Key new observation: The Jacobian matrix, which characterizes the feasibility boundary, has the same structure as the Laplacian matrix in spectral graph theory.
- Theoretical implications:
 - System is split into load-rich and generation-rich regions.
 - There is at least one saturated line from the generation rich region to the load rich region.
 - The size of the blackout can be approximated by the generation/load mismatch in one region and the capacity of edges in between.
- Practical application:
 - We can exploit the combinatorial structure to solve the vulnerability analysis problem.

Take 2: Vulnerability analysis as a combinatorial problem

Given a graph G=(V,E) with weights on its vertices

- positive for generation,
- negative for loads,

find a partition of *V* into two loosely connected regions with a significant load / generation mismatch.

Flow between the load-rich and generation-rich regions

- According to the theory, at least one line between the two regions is saturated in the direction from the generation rich region to the load rich region.
- Flow between the two regions can be bounded by the cumulative capacity of inter-region lines.
- Leads to two related problems:
 - Network inhibition problem (C. Phillips (SNL), Proceedings ACM Symposium on Theory of Computing, 1993)
 - Inhibiting bisection problem (Pinar, Fogel, Lesieutre, LBNL, 2007)

Network inhibition problem

k = 0, max-flow= 11
 k = 1, max-flow= 7
 k = 2, max-flow= 5
 k = 3, max-flow= 1

- Cut minimum number of lines so that max flow is below a specified bound.
- Shown to be NP-complete (Phillips 1991).
- Note that the classical min-cut problem is a special version of network inhibition, where max-flow is set to zero.

MILP formulation for network inhibition

- Cut minimum number of lines so that max-flow (mincut) is below a specified bound.
- IP (Integer Programming) formulation for network inhibition:

$$\begin{aligned} & \min & \sum d_{ij} \\ & s.t. & \forall (v_i, v_j) \in E & & p_i - p_j - s_{ij} - d_{ij} \leq 0 \\ & \sum_{(v_i, v_j) \in E} c_{ij} s_{ij} \leq B \\ & \sum_{(v_i, v_j) \in E} c_{ij} s_{ij} \leq B \\ & p_s = 0; & p_t = 1 \\ & p_i, d_{ij}, s_{ij} \in \{0, 1\}; \end{aligned}$$

$$p_{i} = \begin{cases} 0 & v_{i} \in S \\ 1 & v_{i} \in T \end{cases} \qquad d_{ij} = \begin{cases} 1 & if \quad e_{ij} \quad is \quad cut. \\ 0 & otherwise \end{cases} \qquad s_{ij} = \begin{cases} 1 & d_{ij} = 0 \land p_{i} \neq p_{j} \\ 0 & otherwise \end{cases}$$

Inhibiting bisection problem

- Divide graph into two parts (bisection) so that
 - load/generation mismatch is maximum.
 - cutsize is minimum.

```
imbalance= 6; cutsize=2
imbalance=10; cutsize=3
imbalance=11; cutsize=5
```


Solving the inhibiting cut problem

- ***** Goal: minimize α (cutsize) (1- α) imbalance
 - α is the relative importance of cutsize compared to imbalance.
- Solution: use a standard min-cut algorithm.
- Min-cut gives an optimal solution to the inhibiting bisection problem.

Comparison of combinatorial models for vulnerability analysis

Network inhibition	Inhibiting bisection
NP-complete	Polynomial-time versions available
Accurate formulation of the problem	Approximation to the real problem
Detects specific vulnerabilities	Detects groups of vulnerabilities
Better control for the analysis, there is a solution for any number of lines	Loose control; there are jumps in cutsizes

Take 3: Inhibiting bisection formulation

http://uwadmnweb.uwyo.edu/infotech/internet2/desc3.htm

- Simplified model for Western states
- 13,374 nodes and 16,520 lines.
- Complete analysis used
 Goldberg's min-cut solver
- Checked results with PICO, a massively parallel integer programming solver, developed by Phillips et al. at Sandia National Laboratories

Inhibiting bisection results

- Goldberg's min-cut solver takes minutes on standard desktop computer
- Solutions with small cutsize can be used to detect initiating events and groups of vulnerabilities
- Solutions with medium cutsize reveal load corridors.

Conclusions and future work

- Vulnerability analysis of a power system can be studied as a mixed integer nonlinear programming problem.
- Special structure of an optimal solution to the MINLP formulation can be exploited for a computationally easier approach.
- Our combinatorial techniques can analyze vulnerabilities of large systems in a short amount of time.
- Next goal: include vulnerability analysis as a component in decision support and policy making
- Many other applications of networks
 - Environmental management: exploit fracture networks for subsurface flows
 - Regulate pathways in biological networks
 - Transportation networks
 - Gas, water distribution networks

Questions?

Appendices

A: Power Flow Equations

B: Spectral Graph Theory

C: Combinatorial Formulations

A: Power Flow Equations

Power Flow Equations

$$(V_{i},\theta_{i}) \qquad (V_{j},\theta_{j})$$

$$B_{ij}V_{i}V_{j}\sin(\theta_{i}-\theta_{j}) \qquad \text{Active power}$$

$$B_{ij}V_{i}V_{j}\cos(\theta_{i}-\theta_{j})+V_{i}^{2} \qquad \text{Reactive power}$$

$$\frac{-\pi}{2} \leq \theta_{i}-\theta_{j} \leq \frac{\pi}{2} \qquad V: \text{ voltage}$$

$$V_{l} \leq V \leq V_{u} \qquad B: \text{ susceptance}$$

- Traditional graph algorithms are not directly applicable.
 - Nonlinearity makes use of traditional graph models difficult.
 - Flow is governed by variables on vertices.

Power Flow Equations

$$A = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

Active Reactive

$$p = A^{T} D(e^{|A|\ln V}) B \sin(A\theta)$$

$$q = -|A^{T}| D(e^{|A|\ln V}) B \cos(A\theta) + V^{2} D(A^{T} BA)$$

$$-\pi/2 \le A\theta \le \pi/2; \qquad V_{I} \le V \le V_{II}$$

- Simplified model for power flow:
 - Fix voltages at 1.
 - Work only on active power.

$$F(A,\theta,p) = A^{T}B\sin(A\theta) - p = 0$$

Measuring the severity of a blackout

 $\min_{\theta,z} 1 - z_g 1$

s.t.
$$F(A,\theta,p+z) = 0$$

 $-\pi/2 \le A\theta \le \pi/2$

$$0 \le p_g + z_g \le p_g$$

$$p_l \le p_l + z_l \le 0$$

Minimum load shed

Feasible power flow

Generators remain as generators.

Loads remain as loads.

$$\begin{pmatrix} -e \\ 0 \end{pmatrix} + \lambda^{T} \frac{\partial F}{\partial z} + \begin{pmatrix} \mu_{4} - \mu_{3} \\ \mu_{2} - \mu_{1} \end{pmatrix} = 0$$

$$\lambda^{T} \frac{\partial F}{\partial \theta} + A^{T} (\mu_{6} - \mu_{5}) = 0$$

$$\mu_{1}z_{l} = 0; \quad \mu_{2}(p_{l} + z_{l}) = 0;$$

$$\mu_{4}z_{g} = 0; \quad \mu_{3}(p_{g} + z_{g}) = 0;$$

$$\mu_{5}(\pi/2 + A\theta) = 0; \quad \mu_{6}(\pi/2 - A\theta) = 0;$$

$$\mu_{1}, \dots, \mu_{6} \ge 0$$

B: Spectral Graph Theory

Feasibility boundary and spectral graph theory

On the boundary of feasibility, the power-flow Jacobian, *J*, will have its second singular vector, when inequality constraints are inactive.

$$\frac{\partial F}{\partial \theta} = J = A^T B D((1 - \gamma) \cos(A\theta) A$$

$$Jw = 0; \qquad w^T e = 0; w^T w = 1$$

J has the same structure as Laplacian in spectral graph theory.

Feasibility boundary and spectral graph theory

Theorem: The number of singular vectors of the Laplacian is equal to the number of connected components of its graph.

Corollary: At the boundary of feasibility the power grid is divided into two regions by lines that are cut or saturated.

$$\frac{\partial F}{\partial \theta} = J = P \begin{pmatrix} J_{11} & 0 \\ 0 & J_{22} \end{pmatrix} P^{T} = A^{T} B D ((1 - \gamma) \cos(A\theta) A$$

Impact: Setting Lagrangian multipliers to 0 yields direct transformation of our MINLP formulation to a combinatorial problem.

$$J\lambda + A^T(\mu_6 - \mu_5) = 0$$

Structure of an optimal solution: load and generation-rich regions

Analysis of the KKT conditions reveals a special structure of an optimal solution.

$$\begin{pmatrix} -e \\ 0 \end{pmatrix} - \begin{pmatrix} \lambda_g \\ \lambda_l \end{pmatrix} + \begin{pmatrix} \mu_4 - \mu_3 \\ \mu_2 - \mu_1 \end{pmatrix} = 0$$

- The system is decomposed into two regions.
 - Generation-rich region $\lambda_i < 0$
 - No decrease in loads, generation can be shed.
 - Load-rich region $\lambda_i \geq 0$
 - No decrease in generation, loads can be shed.

Maximum-flow and minimum cut

- Given a graph, with capacities on edges, a source vertex, s, and a terminal vertex, t, the objective is to push as much flow as possible from the source to the terminal.
- Cut is a bipartitioning of the vertices into S and T, so that s in S and t in T.
 - Capacity of a cut is the cumulative capacity of edges between S and T.
 - Min-cut is a cut with minimum capacity.
- Volume of max-flow = capacity of a min-cut.

C: Combinatorial Formulations

MILP formulation for network inhibition

- Cut minimum number of lines so that max-flow (mincut) is no more than a specified bound.
- IP formulation for min-cut:

min
$$\sum c_{ij} s_{ij}$$

s.t. $\forall (v_i, v_j) \in E$ $p_i - p_j - s_{ij} \le 0$
 $p_i - p_j + s_{ij} \ge 0$
 $p_s = 0; \quad p_t = 1$
 $p_i, s_{ij} \in \{0,1\};$

• $c_{ij} > 0$ is the capacity of edge e_{ij} .

$$p_{i} = \begin{cases} 0 & v_{i} \in S \\ 1 & v_{i} \in T \end{cases} \qquad s_{ij} = \begin{cases} 1 & p_{i} \neq p_{j} \\ 0 & otherwise \end{cases}$$

Inhibiting bisection

Minimize x (cutsize)- imbalance

$$x>4$$
 2x-6

Inhibiting bisection (constrained version)

- Given a graph G=(V,E) with weights W_i on its vertices,
 - $w_i > 0$ for generation,
 - $w_i \leq 0$ for consumption,

find a bipartition of *V* into *S* and *T* with maximum imbalance, where the cutsize is below a specified threshold.

• Imbalance:
$$\sum_{v_i \in S} w_i$$

• Cutsize:
$$\left|\{(v_i,v_j)\in E,v_i\in S,v_j\in T\}\right|$$

- NP-complete.
 - Reduction from graph bisection problem.
- Allowing trade-off allows a polynomial time solution
 - Min α (cutsize) (1- α) imbalance

Solving the inhibiting cut problem

- Goal: minimize α (cutsize) (1- α) imbalance
 - ullet α is the relative importance of cutsize compared to imbalance.
- Solution: use a minimum-cut algorithm.
- Method: use balance edges to connect each generation (load) vertex to s(t).
 - If a generator (load) is in part T(S),
 - its balance edge will be cut, and imbalance metric will decrease by the vertex weight.
 - Assign this change as the capacity of the balance edge.
 - Other edges affect the cutsize.
 - Their weights are assigned as α .
- Minimum cut gives an optimal solution to the inhibiting bisection problem.

