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Power blackouts are a global problem
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August 2003 blackout affected 50 million
people in New York, Pennsylvania, Ohio,
Michigan, Vermont, Massachusetts,
Connecticut, New Jersey, Ontario.

The time to recover from the blackout was as
long as 4 days at an estimated cost of $4-10 B

Similar occurrences elsewhere: Brazil (1999),
France-Switzerland-Italy (2003)
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Investigation of Aug. 14, 2003 Blackout

U.S.-Canada Power System Outage Task Force

Final Report on the
August 14, 2003 Blackout
in the
United States and Canada:

Causes and
Recommendations

April 2004

*»*Consortium for Electric Reliability
Technology Solutions (CERTS)
coordinated/staffed initial fact-finding
field investigations

*+J. Eto (LBNL) appointed to Electric
Systems Working Group

0 Organized/conducted technical
workshops

0 Staffed technical analysis teams
(Root Cause, Frequency, Data
Warehousing)

% Recommendation 13:

» DOE should expand its research
programs on reliability related
tools and technologies
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The power grid is increasingly vulnerable
as the complexity of the system grows

< Problem: the current standard
requires the system to be resilient to
only one failure, because higher
standards are not enforceable.

< Goal: develop computational
methods that

= detect vulnerabilities of the
power network

» determine how to update the
system to increase security

» scale and are widely applicable

< Challenge: requires combinatorial
and nonlinear optimization

= NP-hard
= |arge-scale problems

Northeast blackout started with three
broken lines.



Graphical representation of a blackout

Boundary of feasibility region shifts

P, 4 / as we add/remove lines

1
Operating point corresponding to a solution of the
power flow equations

< Blackout corresponds to infeasibility of power flow equations.
< Cascading is initiated by a significant disturbance to the system.

< Our focus is detecting initiating events and analyzing the network
for vulnerabilities.



Vulnerability analysis viewed as a bi-l
optimization problem
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< Add integer (binary) line parameters, y, to identify broken lines
< Measure the blackout severity as the distance to feasibility boundary
< Goal:

= cut minimum number of lines so that

» the shortest distance to feasibility (i.e. severity) is at least as
large as a specified target




This approach leads to a Mixed
Integer Nonlinear Program (MINLP)
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minimize number of
lines cut

feasible power flow
severity above threshold

feasible load shedding

satisfy the KKT optimality
conditions



Relaxed model - pictorially

Few lines
failed

N
@ Fewlines
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Operating point

< Feasibility boundary moves
as lines fail.

< Relaxed model: lines
“partially” fail.

< Benefits:

» Operating point now lies
exactly on the feasibility
boundary

= Transforms the mixed-
integer problem (difficult)
Into a continuous one
(easier).



Relaxation works on small problems

< Four candidate lines
identified.

—1s| < Two are sufficient to
cause a blackout.

< Failure of these lines
can cause a blackout
with 843 MW loss out
of a total load of
1655 MW).

< Solutions found
using SNOPT.

T 19




.... but not on larger problems

» 13 candidate lines are identified

» Failure of these lines can cause a
blackout with 615 MW loss of
load (total load is 4200 MW)

+» Better solutions exist
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Computational Issues/Challenges

< The problem involves integer variables (need to employ
relaxation).

< Nonlinear/nonconvex optimization problem leads to issues
with local minima.

< Scalability — large scale systems pose a challenge due to
Increased computational burden and nonlinear optimization.

< The final solution and convergence is sensitive to initial
conditions.



Exploiting the combinatorial structure

<+ Key new observation: The Jacobian matrix, which
characterizes the feasibility boundary, has the same structure
as the Laplacian matrix in spectral graph theory.

< Theoretical implications:
=  System is split into load-rich and generation-rich regions.

= There is at least one saturated line from the generation rich
region to the load rich region.

= The size of the blackout can be approximated by the
generation/load mismatch in one region and the capacity of
edges in between.

< Practical application:

= We can exploit the combinatorial structure to solve the
vulnerability analysis problem.



Take 2: Vulnerability analysis as a
combinatorial problem

Given a graph G=(V,E) with weights on its vertices
* positive for generation,
» negative for loads,

find a partition of V into two loosely connected
regions with a significant load / generation mismatch.




Flow between the load-rich and
generation-rich regions

< According to the theory, at least one line between the
two regions is saturated in the direction from the
generation rich region to the load rich region.

<+ Flow between the two regions can be bounded by the
cumulative capacity of inter-region lines.

< Leads to two related problems:

» Network inhibition problem (C. Phillips (SNL),
Proceedings ACM Symposium on Theory of
Computing, 1993)

* Inhibiting bisection problem (Pinar, Fogel, Lesieutre,
LBNL, 2007)



Network inhibition problem

. max-flow= 11
. max-flow=7
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2, max-flow= 5
3, max-flow=1
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< Cut minimum number of lines so that max flow is below a
specified bound.

<+ Shown to be NP-complete (Phillips 1991).

< Note that the classical min-cut problem is a special
version of network inhibition, where max-flow is set to
ZEero.



MILP formulation for network inhibitio

< Cut minimum number of lines so that max-flow (min-
cut) is below a specified bound.

< IP (Integer Programming) formulation for network
Inhibition:
min Edij

st. V(v,v,)EE
Ecijsij <B
(v; WV JEE

p.=0; p =1
Pisd;,s; €{0,1};

pi_pj_sij_dijso
pi—pj+sij+dij20

\) ij

Pi={0 v.ES {1 if e, is cut.

! = g 1 dij=0/\pi¢pj
Vi 70 otherwise

0 otherwise




Inhibiting bisection problem

* Divide graph into two parts (bisection) so that
* load/generation mismatch is maximum.

e cutsize iIs minimum.
Imbalance= 6; cutsize=2

Imbalance=10: cutsize=3
Imbalance=11: cutsize=5




Solving the inhibiting cut problem

< Goal: minimize « (cutsize) - (1- a) imbalance
= s the relative importance of cutsize compared to
Imbalance.
< Solution: use a standard min-cut algorithm.

<+ Min-cut gives an optimal solution to the inhibiting bisection
problem.




Comparison of combinatorial models

vulnerability analysis

Network inhibition

Inhibiting bisection

NP-complete

Polynomial-time versions available

Accurate formulation of the problem

Approximation to the real problem

Detects specific vulnerabilities

Detects groups of vulnerabilities

Better control for the analysis, there is a
solution for any number of lines

Loose control; there are jumps in cutsizes




Take 3: Inhibiting bisection formulation

o Subatation

== Highvoitage s transmissien line
! Mg veltage do raneay ssion line
M Highveltage de terminal

lllll

http://uwadmnweb.uwyo.edu/infotech/internet2/desc3.htm

< Simplified model for
Western states

% 13,374 nodes and 16,520
lines.

< Complete analysis used
Goldberg’s min-cut solver

< Checked results with
PICO, a massively parallel
integer programming
solver, developed by
Phillips et al. at Sandia
National Laboratories



Inhibiting bisection results

< Goldberg’s min-cut
solver takes minutes on
standard desktop

o computer

0 Load corridors < Solutions with small
50 | cutsize can be used to
40 Z detect initiating events
30 and groups of
20 vulnerabilities

Initiating

10 oS % Solutions with medium

0 : . : cutsize reveal load
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Conclusions and future work

> Vulnerability analysis of a power system can be studied as a mixed

integer nonlinear programming problem.

> Special structure of an optimal solution to the MINLP formulation

can be exploited for a computationally easier approach.

< Our combinatorial techniques can analyze vulnerabilities of large
systems in a short amount of time.

» Next goal: include vulnerability analysis as a component in decision

support and policy making

> Many other applications of networks

Environmental management: exploit fracture networks for
subsurface flows

Regulate pathways in biological networks
Transportation networks
Gas, water distribution networks
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Appendices

A: Power Flow Equations
B: Spectral Graph Theory
C: Combinatorial Formulations



A: Power Flow Equations




Power Flow Equations

(V..0,) V;.0))

B,;VV,sm(6,-6,) Active power
B,V\V . cos(8,-6,)+V? Reactive power

% <6,-6, < T V:voltage

2 g phase angle

VsV <V, B: susceptance

< Traditional graph algorithms are not directly applicable.

* Nonlinearity makes use of traditional graph models
difficult.

= Flow is governed by variables on vertices.




Power Flow Equations

« 1 -1 0 O]
1 0 -1 O
A=l0 1 -1 0
0O 1 0 -1
) 0 0 1 -1
Active p=A"D(""")Bsin(A0)
Reactive g=-1A" 1D )Bcos(A6) + V> D(A" BA)

-m/2<A0=<m/2; V, sV <V,

< Simplified model for power flow:
= Fix voltages at 1.

=  Work only on active power.

F(A,0,p) = A"Bsin(Af) - p=0




Measuring the severity of a blacko

N .
P, min, |-z, | Minimum load shed
st. F(A0,p+27)=0

_x/2<AO<m/2 Feasible power flow
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— Di=p*T7s= 0
Loads remain as loads.
P1
(_e)+/’\.T£+(‘u4 _M3)=O
0 0z U, — W,
AT%+ A" (us —us) =0
KKTconditions wz, =0; w(p, +1z)=0;

— M4Zg=0; M3(pg+Zg)=O;
u(T/2+ A6 =0; u (w/2—A6)=0;

W ,....us =0




B: Spectral Graph Theory




Feasibility boundary and spectral graph theory

On the boundary of feasibility, the power-flow Jacobian, J,
will have its second singular vector, when inequality

constraints are inactive.

% =J=A"BD((1-y)cos(AO)A
Jw=0;  we=0ww=I

J has the same structure as Laplacian in spectral graph theory.

2 1 -1 0 0]

1 0 -1 0 2 -1 -0
-1 3 -1 -1
A=|0 1 -1 O > 4T py =
0 1 o0 -1 -1 -1 3 -1
0 o |0 -1 -1 2]

3< 1 —1




Feasibility boundary and spectral graph theory

Theorem: The number of singular vectors of the Laplacian is equal
to the number of connected components of its graph.

Corollary: At the boundary of feasibility the power grid is divided
iInto two regions by lines that are cut or saturated.

oF (]11 0

—=J=P )PT = A"BD((1-7y)cos(AB)A

Impact: Setting Lagrangian multipliers to 0 yields direct
transformation of our MINLP formulation to a combinatorial

problem.
JA+ A (U, —us)=0



Structure of an optimal solution: load
and generation-rich regions

Analysis of the KKT conditions reveals a
special structure of an optimal solution.

—e )"g) (M4 T M?))
— + =0
( O ) ()Lz W, —
* The system is decomposed into two regions.
» Generation-rich region A, <O
* No decrease in loads, generation can be shed.

- Load-rich region A, = O
* No decrease in generation, loads can be shed.



Maximum-flow and minimum cut

Capacity=10 2/2
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» Given a graph, with capacities on edges, a source vertex, s,
and a terminal vertex, t, the objective is to push as much flow
as possible from the source to the terminal.

» Cut is a bipartitioning of the vertices into Sand T, so thatsin S
andtinT.

= Capacity of a cut is the cumulative capacity of edges
between S and T.

= Min-cut is a cut with minimum capacity.
*» Volume of max-flow = capacity of a min-cut.

4

D)




C: Combinatorial Formulations




MILP formulation for network inhibiti

< Cut minimum number of lines so that max-flow (min-
cut) is no more than a specified bound.

% |P formulation for min-cut:

min E CiiS;

p,—-p;—s;=<0
st. VY(,v)EE S
pi_pj-l_SijZO
p. =0, p =1
pi»s; €40,1};

= ¢, >0is the capacity of edge ¢;.

- _{O v.eS ~ 1 pPi=D,
Pi=1 v,eTl i =10 otherwise




Inhibiting bisection -

Minimize x (cutsize)- imbalance

% x>4 2x-6
-3 % 0.5<x<4 3x-10

-2 <+ x<0.5 5x-11




Inhibiting bisection (constrained version)

+ Given a graph G=(V,E) with weights y on its vertices,
" w. > () for generation,
"w, =<0 for consumption,

find a bipartition of Vinto S and T with maximum imbalance,
where the cutsize is below a specified threshold.

= |mbalance: Ewi
v, €S

+ Cutsize:  [{(v,v,)E Ev, E Sy, ETY

<+ NP-complete.
= Reduction from graph bisection problem.

< Allowing trade-off allows a polynomial time solution
* Min «a(cutsize) - (1- a) imbalance



Solving the inhibiting cut problem

Goal: minimize «a (cutsize) - (1- a ) imbalance
= s the relative importance of cutsize compared to imbalance.
Solution: use a minimum-cut algorithm.
Method: use balance edges to connect each generation (load) vertex to s(t).
= |f a generator (load) is in part T(S),
 its balance edge will be cut, and imbalance metric will decrease by the vertex weight.
» Assign this change as the capacity of the balance edge.

=  Other edges affect the cutsize.
* Their weights are assigned as o.
Minimum cut gives an optimal solution to the inhibiting bisection problem.




