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Power blackouts are a global problem 

  August 2003 blackout affected 50 million 
people in New York, Pennsylvania, Ohio, 
Michigan, Vermont, Massachusetts, 
Connecticut, New Jersey, Ontario.  

  The time to recover from the blackout was as 
long as 4 days at an estimated cost of $4-10 B 

  Similar occurrences elsewhere: Brazil (1999), 
France-Switzerland-Italy (2003)  



Investigation of Aug. 14, 2003 Blackout 
 Consortium for Electric Reliability 

Technology Solutions (CERTS) 
coordinated/staffed initial fact-finding 
field investigations 

 J. Eto (LBNL) appointed to Electric 
Systems Working Group 

  Organized/conducted technical 
workshops 

  Staffed technical analysis teams 
(Root Cause, Frequency, Data 
Warehousing) 

 Recommendation 13:  
  DOE should expand its research 

programs on reliability related 
tools and technologies 



The power grid is increasingly vulnerable 
as the complexity of the system grows 

  Problem: the current standard 
requires the system to be resilient to 
only one failure, because higher 
standards are not enforceable. 

  Goal: develop computational 
methods that    
  detect vulnerabilities of the 

power network 
  determine how to update the 

system to increase security 
  scale and are widely applicable 

  Challenge: requires combinatorial 
and nonlinear optimization  
  NP-hard 
  large-scale problems 

Northeast blackout started with three 
broken lines. 



Graphical representation of a blackout 

Operating point corresponding to a solution of the 
power flow equations 

P1 

P2 
Boundary of feasibility region shifts 
as we add/remove lines 

  Blackout corresponds to infeasibility of power flow equations.  
  Cascading is initiated by a significant disturbance to the system.  
  Our focus is detecting initiating events and analyzing the network 

for vulnerabilities.  



Vulnerability analysis viewed as a bi-level 
optimization problem 

  Add integer (binary) line parameters, γ,  to identify broken lines 
  Measure the blackout severity as the distance to  feasibility boundary 
  Goal:  

  cut minimum number of lines so that  
  the shortest distance to feasibility (i.e. severity) is at least as 

large as a specified target  
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This approach leads to a Mixed 
Integer Nonlinear Program (MINLP) 
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+ ATD(1− γ)(µ6 −µ5) = 0

µ1zl = 0; µ2(pl + zl ) = 0
µ4zg = 0; µ3(pg + zg ) = 0;
µ5(π /2 + AD(1− γ)θ) = 0;
µ6(π /2 − AD(1− γ)θ) = 0;
µ1,...,µ6 ≥ 0
γ ∈ {0,1}

feasible power flow 

feasible load shedding 
severity above threshold 

minimize number of 
lines cut 

satisfy the KKT optimality 
conditions 



Relaxed model - pictorially 

Few lines  
failed 

Operating point 
P1 

P2 
All lines in service 

Few lines  
partially failed 

  Feasibility boundary moves 
as lines fail. 

  Relaxed model:  lines 
“partially” fail.  

  Benefits: 
 Operating point now lies 

exactly on the feasibility 
boundary 

 Transforms the mixed-
integer problem (difficult) 
into a continuous one 
(easier). 



Relaxation works on small problems 
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IEEE 30-Bus System 

  Four candidate lines 
identified. 

  Two are sufficient to 
cause a blackout. 

  Failure of these lines 
can cause a blackout 
with 843 MW loss out 
of a total load of 
1655 MW). 

  Solutions found 
using SNOPT. 
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…. but  not on larger problems 

IEEE 118 Bus System 

  13 candidate lines are identified 
  Failure of these lines can cause a 

blackout with 615 MW loss of 
load (total load is 4200 MW) 

  Better solutions exist 



Computational Issues/Challenges 

  The problem involves integer variables (need to employ 
relaxation). 

  Nonlinear/nonconvex optimization problem leads to issues 
with local minima. 

  Scalability – large scale systems pose a challenge due to 
increased computational burden and nonlinear optimization. 

  The final solution and convergence is sensitive to initial 
conditions. 



Exploiting the combinatorial structure  

  Key new observation: The Jacobian matrix, which 
characterizes the feasibility boundary, has the same structure 
as the Laplacian matrix in spectral graph  theory.  

  Theoretical implications:  
  System is split into load-rich and generation-rich regions. 
  There is at least one saturated line from the generation rich 

region to the load rich region. 
  The size of the blackout can be approximated by the 

generation/load mismatch in one region and the capacity of 
edges in between. 

  Practical application:  
  We can exploit the combinatorial structure to solve the 

vulnerability analysis problem. 



Take 2: Vulnerability analysis as a 
combinatorial problem 

Given a graph G=(V,E)  with weights on its vertices 
•  positive for generation, 
•  negative for loads,  

find a partition of V into two loosely connected  
regions with a significant load / generation mismatch. 
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Flow between the load-rich and 
generation-rich regions 

  According to the theory, at least one line between the 
two regions is saturated in the direction from the 
generation rich region to the load rich region.  

  Flow between the two regions can be bounded by the 
cumulative capacity of inter-region lines.  

   Leads to two related problems: 
 Network inhibition problem (C. Phillips (SNL), 

Proceedings ACM Symposium on Theory of 
Computing, 1993) 

  Inhibiting bisection problem (Pinar, Fogel, Lesieutre, 
LBNL, 2007) 
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Network inhibition problem 

  Cut minimum number of lines so that max flow is below a 
specified bound.  

  Shown to be NP-complete (Phillips 1991).  
  Note that the classical min-cut problem is a special 

version of network inhibition, where max-flow is set to 
zero.  



MILP formulation for network inhibition 

€ 

min dij∑

s.t. ∀(vi,v j )∈ E
pi − p j − sij − dij ≤ 0
pi − p j + sij + dij ≥ 0

cijsij
(vi ,v j )∈E
∑ ≤ B

ps = 0; pt =1
pi,dij ,sij ∈ {0,1};

€ 

dij =
1 if eij is cut.
0 otherwise
 
 
 

€ 

pi =
0 vi ∈ S
1 vi ∈ T
 
 
 

€ 

sij =
1 dij = 0∧ pi ≠ p j

0 otherwise
 
 
 

  Cut minimum number of lines so that max-flow (min-
cut)  is below a specified  bound.  

  IP (Integer Programming) formulation for network 
inhibition:  



Inhibiting bisection problem 

•  Divide graph into two parts (bisection) so that  
•  load/generation mismatch is maximum. 
•  cutsize is minimum. 

imbalance=10; cutsize=3 
imbalance=11; cutsize=5 

imbalance=  6; cutsize=2 
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Solving the inhibiting cut problem 

  Goal: minimize   α (cutsize) - (1- α) imbalance 
  α is the relative importance of cutsize compared to 

imbalance. 
  Solution: use a standard min-cut algorithm. 
  Min-cut gives an optimal solution to the inhibiting bisection 

problem. 
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Comparison of combinatorial models for 
vulnerability analysis 
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Network inhibition Inhibiting bisection 
NP-complete Polynomial-time versions available 
Accurate formulation of the problem Approximation to the real problem 

Detects specific vulnerabilities Detects groups of vulnerabilities 

Better control for the analysis, there is a 
solution for any number of lines 

Loose control; there are jumps in cutsizes 



Take 3: Inhibiting bisection formulation 

  Simplified model for 
Western states 

  13,374 nodes and 16,520 
lines. 

  Complete analysis used 
Goldberg’s min-cut solver 

  Checked results with 
PICO, a massively parallel 
integer programming 
solver, developed by 
Phillips et al. at Sandia 
National Laboratories 

http://uwadmnweb.uwyo.edu/infotech/internet2/desc3.htm 



Inhibiting bisection results 

  Goldberg’s min-cut 
solver takes minutes on 
standard desktop 
computer 

  Solutions with small 
cutsize can be used to 
detect initiating events 
and groups of  
vulnerabilities 

  Solutions with medium 
cutsize reveal load 
corridors. 

Initiating 
events 

Load corridors 



Conclusions and future work 

  Vulnerability analysis of a power system can be studied as a mixed 
integer nonlinear programming problem.  

  Special structure of an optimal solution to the MINLP formulation 
can be exploited for a computationally easier approach. 

  Our combinatorial techniques can analyze vulnerabilities of large 
systems in a short amount of time. 

  Next goal: include vulnerability analysis as a component in decision 
support and policy making 

  Many other applications of networks 
  Environmental management: exploit fracture networks for 

subsurface flows  
  Regulate pathways in biological networks 
  Transportation networks 
  Gas, water distribution networks 



Questions?  



Appendices  

A: Power Flow Equations 
B: Spectral Graph Theory 
C: Combinatorial Formulations 



A: Power Flow Equations 



Power Flow  Equations 

  Traditional graph algorithms are not directly applicable. 
  Nonlinearity makes use of traditional graph models 

difficult.   
  Flow is governed by variables on vertices.  
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−π
2
≤θi −θ j ≤

π
2

Vl ≤V ≤Vu

€ 

BijViV j sin(θi −θ j )

€ 

(Vi,θi)

€ 

(V j ,θ j )

€ 

BijViV j cos(θi −θ j ) +Vi
2

Active power 
Reactive power 

V: voltage 
θ: phase angle 
B: susceptance 



Power Flow  Equations 

  Simplified model for power flow: 
  Fix voltages at 1.  
  Work only on active power.  

Active  
Reactive 

€ 

p = ATD(e|A | lnV )Bsin(Aθ)
q = − | AT |D(e|A | lnV )Bcos(Aθ) +V 2D(ATBA)
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A =

1 −1 0 0
1 0 −1 0
0 1 −1 0
0 1 0 −1
0 0 1 −1
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−π /2 ≤ Aθ ≤ π /2; VL ≤V ≤VU

€ 

F(A,θ, p) = ATBsin(Aθ) − p = 0



Measuring the severity of a blackout 

€ 

minθ ,z |−zg |
s.t. F(A,θ, p + z) = 0

−π /2 ≤ Aθ ≤ π /2
0 ≤ pg + zg ≤ pg
pl ≤ pl + zl ≤ 0

Minimum load shed 

Feasible power flow 

Loads remain as loads.  
Generators remain as generators. 
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B: Spectral Graph Theory 



Feasibility boundary and spectral graph theory  

On the boundary of feasibility, the power-flow Jacobian, J, 
will have its second singular vector, when inequality 
constraints are inactive.  
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∂F
∂θ

= J = ATBD((1− γ)cos(Aθ)A

Jw = 0; wTe = 0;wTw =1

J has the same structure as Laplacian in spectral graph theory.   
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Feasibility boundary and spectral graph theory 

Theorem: The number of singular vectors of the Laplacian is equal  
to the number of  connected components of its graph. 

Corollary: At the boundary of feasibility the power grid is divided 
 into two regions by lines that are cut or saturated. 

€ 

Jλ + AT (µ6 −µ5) = 0

Impact: Setting Lagrangian multipliers to 0 yields direct 
transformation of our MINLP formulation to a combinatorial 
problem.  
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 PT = ATBD((1− γ)cos(Aθ)A



Structure of an optimal solution: load 
and generation-rich regions 

Analysis of the KKT conditions reveals a 
special structure of an optimal solution.  
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λi < 0
•  The system is decomposed into two regions. 

•  Generation-rich region  
•  No decrease in loads, generation can be shed. 

•  Load-rich region 
•  No decrease in generation, loads can be shed. 
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λi ≥ 0



Maximum-flow and minimum cut 

  Given  a graph, with capacities on edges, a source vertex, s, 
and a terminal vertex, t,  the objective is to push  as much flow 
as possible from the source to the terminal. 

  Cut is a bipartitioning of the vertices into S and T, so that s in S 
and t in T.  
  Capacity of a cut is the cumulative capacity of edges 

between S and T. 
  Min-cut is a cut with minimum capacity. 

  Volume of max-flow = capacity of a min-cut.    
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C: Combinatorial Formulations 



MILP formulation for network inhibition 

  Cut minimum number of lines so that max-flow (min-
cut)  is no more than a specified  bound. 

  IP formulation  for min-cut:  

          is the capacity of edge    .    
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min cijsij∑

s.t. ∀(vi,v j )∈ E
pi − p j − sij ≤ 0
pi − p j + sij ≥ 0

ps = 0; pt =1
pi,sij ∈ {0,1};
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cij > 0
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eij
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sij =
1 pi ≠ p j

0 otherwise
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pi =
0 vi ∈ S
1 vi ∈ T
 
 
 



 Inhibiting bisection 

Minimize x (cutsize)- imbalance 
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  x<0.5  5x-11 

  x>4  2x-6 
  0.5<x<4  3x-10 



Inhibiting bisection (constrained version) 

  Given a graph G=(V,E) with weights      on its vertices,   
            for generation, 
            for consumption,  

   find a bipartition of V into S and T with maximum imbalance, 
where the cutsize is below a specified threshold. 

  Imbalance:  

  Cutsize:  

  NP-complete. 
  Reduction from graph bisection problem.  

  Allowing trade-off allows a polynomial time solution 
  Min α (cutsize) - (1- α) imbalance 
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wi > 0
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wi ≤ 0
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{(vi,v j )∈ E,vi ∈ S,v j ∈ T}
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wi
vi ∈S
∑



Solving the inhibiting cut problem 

  Goal: minimize α (cutsize) - (1- α ) imbalance 
  α is the relative importance of cutsize compared to imbalance. 

  Solution: use a minimum-cut algorithm. 
  Method: use balance edges to connect each generation (load) vertex to s(t).  

  If a generator (load) is in part T(S),  
•  its balance edge will be cut, and imbalance metric will decrease by the vertex weight. 
•  Assign this change as the capacity of the balance edge. 

  Other edges affect the cutsize.  
•  Their weights are assigned as α.  

  Minimum cut gives an optimal solution to the inhibiting bisection problem. 
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