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Today we can simulate large realistic molecular structures

The charge density of a 15,000 atom

quantum dot, Si13607H2236. Using

2048 processors at NERSC the calcu-

lation took about 5 hours.

The calculated dipole moment of

a 2633 atom CdSe quantum rod,

Cd961Se724H948. Using 2560 proces-

sors at NERSC the calculation took

about 30 hours.
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Materials by design

Materials by design could potentially be accelerated through the
judicious use of computational and mathematical tools

Nanosystems often involve 103 – 106 atoms

Atomic details are important: surface charge, impurities, dopant,
symmetry, passivation, etc.
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On using mathematics for chemistry

Every attempt to employ mathematical methods in
the study of chemical questions must be considered
profoundly irrational and contrary to the spirit of
chemistry. If mathematical analysis should ever hold
a prominent place in chemistry — an aberration
which is happily almost impossible — it would
occasion a rapid and widespread degeneration of
that science.

Auguste Comte, 1830
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The problem is solved ...

...in the Schrödinger equation we very nearly have the
mathematical foundation for the solution of the whole
problem of atomic and molecular structure ...

G. N. Lewis, J. Chem. Phys. 1, 17 (1933).
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Many-body Schrödinger equation

HΨi(r1, r2, ..., rN ) = EiΨi(r1, r2, ..., rN )

where the Hamiltonian is given by

H = − h

2m

N∑
i=1

∇2
i +

N∑
i=1

v(ri) +
1

2

∑
i 6=j

e2

|ri − rj |

Ψi contains all the information needed to study a system

|Ψi|2 probability density of finding electrons at a certain state

Ei quantized energy

3N unknowns, i.e. the electron positions
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The problem is solved ... almost

...in the Schrödinger equation we very nearly have the
mathematical foundation for the solution of the whole
problem of atomic and molecular structure ...

but

the problem of the many bodies contained in the atom and
the molecule cannot be completely solved without a great
further development in mathematical technique.

G. N. Lewis, J. Chem. Phys. 1, 17 (1933).

Point of Reference: Computational work for solving this formulation of the
Schrödinger equation is O(103N )
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Density Functional Theory

The unknown is simple – the ground state electron density, ρ0
Hohenberg-KohnTheory

There is a unique mapping between the ground state energy, E0, and
the ground state density, ρ0

No construction given for the functional and none known except for
case of 1 electron

DFT is an exact theory for many-body systems
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Ideas behind Kohn-Sham Equations

Independent particle model – electrons move independently in an
average effective potential field

Replace many-particle wavefunctions, Ψi, with single-particle
wavefunctions, ψi

We can then write Kohn-Sham total energy as:

Etotal[{ψi}] =
1

2

ne∑
i=1

∫
Ω

|∇ψi|2 +

∫
Ω

Vionρ+
1

2

∫
Ω

ρ(r)ρ(r
′
)

|r − r′ |
drdr

′
+Exc(ρ),

where ρ(r) =
∑ne

i=1 |ψi(r)|2,
∫

Ω
ψiψj = δi,j , ne is the number of electrons
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Kohn-Sham Equations

Using this formulation of the energy, it is easy to derive the
Kohn-Sham equations as a result of minimizing the total energy with
respect to the density:[
−1

2
∇2 + Vion(r) +

∫
ρ

|r − r′ |
+ Vxc(ρ)

]
ψi = εiψi, i = 1, 2, ..., ne

or
Hψi = εiψi

with

H =

[
−1

2
∇2 + Vion(r) +

∫
ρ

|r − r′ |
+ Vxc(ρ)

]
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Exchange-Correlation term (short detour)

Most of the complexity is hidden in the exchange-correlation
functional, Exc or equivalently Vxc

Exchange arises from antisymmetry due to the Pauli exclusion
principle

Correlation accounts for other many-body effects missing from
single-particle approximation, e.g. K.E. not covered by first term of
Hamiltonian

No systematic way to improve the exchange–correlation functional

Local Density Approximation (LDA)

Simplest approximation to exchange–correlation term
Assumes energy is equal to energy from a homogeneous electron gas
Purely local, yet remarkably successful
Known limitations

Juan Meza (UC Merced) TRDCM Algorithm for KS Equations Spring 2015 12 / 53



Periodic Supercells (another short detour)

Bloch’s Theorem: In a periodic solid each electronic wave function
can be expressed as the product of exp(ik · r) and a periodic
function, where k is a wavevector, i.e.

ψnk(r) = eik·rφnk(r)

Can expand φnk(r) in a set of plane waves so that ψnk(r) is a sum of
plane waves (more in a minute)

Bloch Theorem allows us to express the electronic wavefunctions in
terms of a discrete set of plane waves
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Discretization Options

Finite difference ψ′(rj) ≈ [ψ(rj + h)− ψ(rj − h)]/h

Finite elements

ψ(r) ≈
n∑
j

αjφj(r), φj(r) nice functions with local support

Local orbital method (good for molecules)

Choose φj(r) as Gaussian or other “nice” functions

Planewave expansion

Choose φj(r) as eigj ·r
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Leads to a plane-wave basis set for our system

Write
ψnk(r) =

∑
j

αje
(i(k+gj)·r)

In principle, you need an infinite plane wave basis set

In practice, you introduce an energy cutoff to truncate the basis set

As a bonus, the kinetic energy term of Hamiltonian is diagonal when
using a plane-wave basis set
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Finally ready to state our finite dimensional problem

Recall we want to

minE[{ψi}] =
1

2

ne∑
i=1

∫
Ω

|∇ψi|2 +

∫
Ω

Vionρ+
1

2

∫
Ω

ρ(r)ρ(r
′
)

|r − r′ |
drdr

′
+ Exc(ρ)

After discretization we have

min
X∗X=Ine

Etotal(X) ≡ Ekinetic(X) + Eion(X) + EHartree(X) + Exc(X),

Ekinetic =
1

2
tr(X∗LX)

Eionic = tr(X∗VionX)

EHartree =
1

2
ρ(X)TL†ρ(X)

Exc = eT (εxc[ρ(X)])

ρ(X) = diag(XX∗)

L = is the discretized Laplacian
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Pseudopotentials (final detour)

Introduction of energy cutoff allowed us to truncate the plane-wave
basis set

Problem is still too large for systems that contain both valence and
core electrons

Pseudopotentials allow us to use a much smaller number of
plane-wave basis thereby reducing the computational cost

Based on idea that most chemistry is dependent on valence electrons
rather than core electrons

Therefore we replace the core electrons (and the ionic potential) with
a weaker pseudopotential

Rest is outside our scope
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Lagrangian for the KS system

Minimization problem can then be written as

min
X∗X=Ine

Etotal(X)

Associated Lagrangian for minimization problem can be written as

L(X) = Etotal(X)− tr
[
ΛT (X∗X − Ine)

]
Any solution must satisfy the first order KKT condition

∇XL(X,Λ) = 0,

X∗X = Ine .
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Which then leads to ....

A little bit of algebra then leads to the following set of equations
called the (discretized) Kohn-Sham equations:

H(X)X = XΛ,

X∗X = Ine .

where the Kohn-Sham Hamiltonian is given by:

H(X) =
1

2
L+ Vion + Diag (L†ρ(X)) + Diag (µxc(ρ(X))

As before, L refers to the discretized Laplacian

X is an N × ne matrix

Diag(·) is a diagonal matrix
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Important Observation

If X is a solution to the Kohn-Sham equations then so is XQ, where
Q ∈ Ck×k and Q∗Q = Ik

Another way of viewing this is that the solution to the constrained
minimization problem is a k-dimensional invariant subspace in Cn

and not just a single matrix.

We will come back to this property when we use trust-regions to
globalize the minimization algorithms.
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Two main approaches for solving the Kohn-Sham
Equations

Many methods - we don’t have the time to discuss them all today

Work with the KS equations directly
Self-Consistent Field (SCF) iteration

View as large-scale linear eigenvalue problem
Need to precondition
Need other acceleration techniques to improve convergence

Minimize the total energy directly
Direct Constrained Minimization (DCM)

Constrained optimization problem
Also requires globalization techniques
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The SCF Iteration in a nutshell

V (ρ(r))

ρ(r) =
∑N

i |ψi(r)|2

{ψi}i=1,...,N

[
−1

2∇
2 + V (ρ(r))

]
ψi = Eiψi

Most of the work is in
solving the linear
eigenvalue problem

If using reciprocal
(Fourier) space, then you
also have many 3D FFTs

For large systems, the
calculation of nonlocal
potentials can also be
expensive

SCF does NOT decrease
the energy monotonically
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Advantages/Disadvantages of DFT

By some counts DFT methods account for 75% of the material
science simulations at supercomputer centers

Parallel efficiencies can be quite high

on plane wave basis can scale to ≈ 1000 processors
on plane wave basis and wavefunction index can scale to ≈ 10, 000
processors

Not systematically improvable

Inadequate for strong and/or non-local correlations

So what’s the problem?

The main workhorse in DFT codes is the SCF algorithm, which can
converge slowly and sometimes doesn’t converge at all!
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When can we expect SCF to work?
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SCF convergence properties

Surprisingly few theoretical results

E(x) may not monotonically decrease between SCF iterations

SCF does not always converge;

limi→∞ ‖H(x(i+1))−H(x(i))‖ 6= 0,

or limi→∞ ‖ρ(x(i+1))− ρ(x(i))‖ 6= 0

For some problems, we can show subsequence convergence;

lim
i→∞
‖ρ(x(i+1))− ρ(x(i−1))‖ = 0
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Example

E(x) =
1

2
xTLx+

α

4
ρ(x)TL−1ρ(x)

L =

(
2 −1
−1 2

)
, x =

(
x1
x2

)
, ρ(x) =

(
x21
x22

)
minE(x)

s.t. x21 + x22 = 1[
L+ αDiag(L−1ρ(x))

]
x = λ1x
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SCF Converges when α = 1.0

∆ρ(i) = ‖ρ(i)− ρ(i−1)‖
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SCF fails when α = 12.0
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Why does SCF fail?

Finding k smallest eigenvalues is equivalent to solving the trace
minimization problem

SCF can be viewed as attempting to minimize a sequence of
surrogate models q(x):

min q(x) =
1

2
tr (X∗H(i)X)

s.t. X∗X = Ik
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Recap: Why does SCF fail?

True Objective and Gradient:

E(x) = 1
2x

TLx+ α
4 ρ(x)TL−1ρ(x)

∇E(x) = H(x)x

Surrogate and Gradient:

Esur(x) = 1
2 (xTH(x(i))x),

∇Esur(x) = H(x(i))x

Objective and Surrogate are different BUT gradients match at x(i) –
(by construction!)

∇E(x(i)) = ∇Esur(x
(i))
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Revisit α = 12 case. Steplength is too long!
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Some Approaches for Improving SCF

Construct better surrogate – cannot afford to use local quadratic
approximation (Hessian too expensive)

Charge mixing to improve convergence (heuristic)

Use Trust Region to restrict the update of the x in a small
neighborhood of the gradient matching point. TRSCF – Thogersen,
Olsen, Yeager & Jorgensen (2004)

DCM – Yang, Meza & Wang (2007)
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Using charge mixing to improve SCF

We would call this accelerating an iterative method. Some choices
include:

Simple mixing

ρi+1 = τρiin + (1− τ)ρiout 0 < τ < 1

Pulay mixing (Direct Inversion of Iterative Subspace)

ρi+1 =
i∑

j=1

αjρ
j ,

i∑
j=1

αj = 1

Broyden mixing
ρi+1 = ρi + τCi+1r

i

Anderson mixing

ρi+1 = ρi + τri + (Si − τYi)Y †i ri
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SCF + charge mixing improves convergence

∆E(x(i)) = ‖E(x(i))− Emin‖ α = 12, n = 10, ne = 2
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Comparison of charge mixing schemes on alanine

alanine

1 2 3 4 5 6 7 8 9 10
10

−10

10
−8
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iteration number (i)

E
i −

 E
m

in
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No mixing
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Comparison of charge mixing schemes on Pt6Ni2O

Pt6Ni2O
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Trust Region Subproblem

Simplest idea is to add a trust region constraint,e.g.

min Esur(X)

s.t.

X∗X = I, orthogonality constraint

‖X −X(i)‖2F ≤ ∆ trust region constraint

Recall that if X is a solution to the Kohn-Sham equations then so is
XQ, where Q ∈ Ck×k and Q∗Q = Ik

Unfortunately this simple constraint does not preserve the rotational
invariance condition, i.e. ‖XQ−Xi‖2F ≤ ∆ for all Q ∈ Ck×k
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Trust Region Subproblem

Instead we will consider the following formulation

min Esur(X)

s.t.

X∗X = I, orthogonality constraint

‖XX∗ −X(i)(X(i))∗‖2F ≤ ∆ trust region constraint

Which is equivalent to solving[
H(X(i))− σX(i)(X(i))∗

]
X = XΛ

X∗X = Ik

σ is a penalty parameter (Lagrange multiplier for the trust region constraint)

Note: the matrix D(X) = XX∗ is called the density matrix
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Detour: hints for deriving equations (4.4)–(4.5) in paper

Let D(X) = XX∗ be the density matrix

Can then show that

‖D(X)−D(X(i))‖2F = ‖D(X)‖2F + ‖D(X(i)‖2F−

2 tr
[
D(X)∗D(X(i)

]
= 2k − 2 tr

[
X∗X(i)X(i)∗X

]
using the following properties of the trace operator

‖A‖2F = tr(A∗A)

tr(AB) = tr(BA)

tr(A+B) = tr(A) + tr(B)
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Some ideas for choosing σ

The convergence of SCF depends on the gap between λk and λk+1,
(Yang, Gao & Meza 2007)

If X is the solution to H(X)X = XΛ, where λ1 ≤ λ2 ≤ · · ·λk are
the smallest k eigenvalues of H(X) that appear in Λ, then the
eigenvalues of H(X)− σXX∗ are

λ1 − σ, λ2 − σ, ..., λk − σ, λk+1, ..., λn.

Strategy: choose σ to open up the gap between λk(H(X(i))) and
λk+1(H(X(i)), where

H(X(i)) = H(X(i))− σX(i)(X(i))∗.
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Trust Region SCF (TRSCF)
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TRSCF further improves convergence

Juan Meza (UC Merced) TRDCM Algorithm for KS Equations Spring 2015 42 / 53



Observation leading to DCM method

Let x(i) is the current approximation

Idea: minimize the energy in a certain (smaller) subspace

Set

x(i+1) = αx(i) + βp(i−1) + γr(i), where

p(i−1) = previous search direction

r(i) = H(i)x(i) − θ(i)x(i) (gradient of Lagrangian)

and α, β, γ are chosen so that

x(i+1)Tx(i+1) = 1

E(x(i+1)) < E(x(i))

N.B. Extension of LOBPCG (Knyazev, 2001) to nonlinear EV problem
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Subspace Minimization

Let Y = (X(i), P (i−1), R(i))

Then we can write X(i+1) = Y G, for some G ∈ C3k×k

And the minimization problem

min
X∗X=Ik

E(Xi+1) ≡ min
G∗Y ∗Y G=Ik

E(Y G)

is equivalent to solving

H(G)G = BGΩk (?)

G∗BG = Ik

where B = Y ∗Y and H(G) = Y ∗H(X)Y is the projected Hamiltonian

N.B. Equation (?) is much smaller than original nonlinear EV problem
(k vs n)
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Direct Constrained Minimization 1

Algorithm

Input: Initial guess X(0) ∈ Cn×k,

1 P (0) = [], i = 0;
2 while ( not converged )

1 Θ(i) = X(i)∗H(i)X(i);
2 R(i) = H(i)X(i) −X(i)Θ(i);
3 Set Y = (X(i), P (i−1),K−1R(i));
4 Solve

min
G∗Y ∗Y G=Ik

Etot(Y G)

5 X(i+1) = Y G(1 : k, :); P (i+1) = Y G(k + 1 : 3k, :);
6 i← i+ 1;

1C. Yang, J. Meza, L. Wang, A Constrained Optimization Algorithm for Total Energy
Minimization in Electronic Structure Calculation, J. Comp. Phy., 217 709-721 (2006)
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KSSOLV Matlab package

KSSOLV Matlab code for solving the Kohn-Sham equations

Open source package

Handles SCF, DCM, Trust Region

Example problems to get started with

Object-oriented design - easy to extend

Good starting point for students
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Example: SiH4

a1 = Atom(’Si’);

a2 = Atom(’H’);

alist = [a1 a2 a2 a2 a2];

xyzlist= [

0.0 0.0 0.0

1.61 1.61 1.61

... ];

mol = Molecule();

mol = set(mol,’Blattice’,BL);

mol = set(mol,’atomlist’,alist);

mol = set(mol,’xyzlist’ ,xyzlist);

mol = set(mol,’ecut’, 25);

mol = set(mol,’name’,’SiH4’);

...

isosurface(rho);
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Example 1: Si29H36

supercell:
25.65× 25.65× 25.65

sampling grid:
96× 96× 96 (ecut=25
Ryd)

10 PCG iterations in each
SCF outer
iteration.(PETOT)

3 inner SCF iteration in
each DCM outer iteration
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Example 2: Alanine

supercell: 20× 15× 20

sampling grid:
96× 48× 96 (ecut=25
Ryd)

10 PCG iterations in each
SCF outer iteration.

3 inner SCF iteration in
each DCM outer iteration
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Example 3: Pt6Ni2O

supercell:
19.6× 10.7Å× 9.2Å

sampling grid:
96× 48× 48

10 PCG iterations in
each SCF outer
iteration.(PETOT)

5 inner SCF
iteration in each
DCM outer iteration
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Example 4: Graphene

supercell:
40× 40× 5

sampling grid:
114× 114× 15

10 PCG iterations in
each SCF outer
iteration.

5 inner SCF
iteration in each
DCM outer iteration
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Summary

Despite dire warnings, mathematical techniques
actually help chemistry

New approach for solving the Kohn-Sham Equations
using a direct optimization method improves
convergence

Trust region modification increases robustness of both
SCF and DCM

New computational software tools for modeling and
simulation of nanosystems
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