A Short Tour
of
Derivative-Free Optimization
Juan Meza

Applied Mathematics
UC Merced



Outline

< Motivation and Example Problems

< Taxonomy of Derivative Free Optimization
<+ Nelder-Mead Simplex

< Genetic Algorithms/Simulated Annealing
< Generating Set Search & Pattern Search

< Future directions

Optimization Seminar March 16, 2016



General Optimization Problem

min  f(x),r € R" opjective function
hz(f) =0 Equality constraints
gi(x) >0 Inequality constraints



Some standard assumptions

< Objective function has infinite (machine)
precision

< Objective function is smooth
< First and second derivatives available
+ Both derivatives are also “nice”

< Constraints are linearly independent and
smooth

< Objective and constraint functions cheap to
evaluate
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General Philosophy

1. Build an approximate model (usually
guadratic) of the nonlinear objective
function

2. Solve the model for its minimum

3. See how well you did and either accept the
answer or throw it away

4. Repeat until you run out of time/money/
patience
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Optimizing the performance of a LPCVD

furnace

Temperature fields in a vertical,
stacked-wafer, low-pressure,
chemical-vapor-deposition furnace

Optimization Seminar

The goal is to find heater powers
that yield optimal uniform
temperature

Temperature uniformity is critical
between wafers and across a
wafer

Computing temperatures involves
solving a heat transfer problem
with radiation

Two-point boundary value
problem solved by finite
differences
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Computing the temperature requires the
solution of a nonlinear PDE

< Independently controlled
heater zones regulate

Heater zones\
tem pe rature

< Adjusting tolerances in the
PDE solution trades off
noise with CPU time

Silicon wafers —
(200 mm dia.)

< Larger tolerances lead to
less accurate PDE solutions;
less time per function
evaluation

Thermocouple —\|

Quartz pedestal—

JT
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The goal is to find heater powers that
vield optimal uniform temperature

N

min  F(p) = (Ti(p) — T),
1=1

p 1S the vector of heater powers,

T;(p) is the temperature at discretization point ¢

T* is the target temperature, and

N 1is the total number of discretization points
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Some observations

< Nice simple objective function — quadratic
< Box constraints
< Easy problem to set up

< Analytic gradients are not available but the
number of heaters is small so we can use
finite-difference gradients

What could possibly go wrong?

Optimization Seminar March 16, 2016



Finite-Difference Gradients

Function Value Convergence
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< 7 Zone furnace configuration
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< Quasi-Newton method exhibits “stair-stepping”
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Lessons learned

< Objective function didn’t have infinite machine
precision

< Sometimes true, but many simulation-based optimization
problems can behave as if function was noisy

< Objective function is smooth
< Probably differentiable, but how do you prove it?
< What do you do if you're not given derivative information

< Constraints are linearly independent and smooth

< Users can sometimes over specify or incorrectly guess
constraints

< Objective function not cheap (PDE solve)
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Derivative-Free Optimization

< Realization that simulation-based
optimization problems require other
methods

< Long history of these types of methods

< Fell out of favor with rise of Newton-type
methods and computers
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One Taxonomy

< Estimation
< Finite Difference

< Implicit Filtering
(Mifflin, Kelley)

<+ Model-Based

< Powell

< Conn, Scheinberg, Toint

< Physics/Bio Inspired
< Simulated Annealing
< Genetic Algorithms

Optimization Seminar

< Direct Search

< Nelder-Mead
Simplex Method

< Pattern Search
< Box
<+ Hooke & Jeeves
< Torczon
< Similar Methods
<+ Wenci
< Lucidi & Sciandrone

< @Garcia-Palomares and
Rodriguez
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One Taxonomy

< Physics/Bio Inspired
< Simulated Annealing
< Genetic Algorithms
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< Direct Search

< Nelder-Mead
Simplex Method

< Pattern Search
< Box
<+ Hooke & Jeeves
< Torczon
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Early History (1960’s)

< Nelder-Mead Simplex (1965)

< One of earliest examples of a direct
search method

<+ Huge success, especially in engineering

< Possibly the most highly cited
optimization method



Nelder-Mead Simplex

» Start with a simplex (polytope in n+1
dimensions)

» Compute function value at vertices and order
the function values

<« 4 Basic Steps
1. Reflect about the centroid
2. Expansion of simplex if really good
3. Contract if reflection didn’t work
4. Shrink the simplex if all else fails



Nelder-Mead Reflection Step
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< L’ reflection step

worst point
(highest function value)
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Nelder-Mead Expansion Step

< |f reflection resulted in best (lowest) value so
far, try an expansion

< else, if reflection helped at all, keep it
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Nelder-Mead Contraction Step

< If reflection didn’t help try a contraction

/ contraction step

worst point
(highest function value)
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Nelder-Mead Shrink Step

< |f all else fails shrink the simplex around
the best point
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best point
worst point (lowest function value)

(highest function value)
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Nelder-Mead Simplex search over Himmelblau function
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Genetic Algorithms

< Based on evolutionary principles
< Can be used for discrete variable problems
< Random element to search

< Claim to be good for global optimization
problems
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Genetic Algorithms

1. Encode the “problem” in a binary string
2. Randomly generate a “population”

3. Calculate fitness of each member of the
population
4. Select pairs of parent strings based on fitness

5. Apply crossover and mutation to generate a new
population of offspring

6. Repeat step 3 to 5 until optimal
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Encoding Methods

< Binary Encoding — Most common method of encoding.
Chromosomes are strings of 1s and Os and each position in
the chromosome represents a particular characteristic of the
problem.

Chromosome A 10110010110011100101

Chromosome B 11111110000000011111
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Crossover

< Choose a random point on the two parents
< Split parents at this crossover point
< Create children by exchanging tails

0/j0|j0j0|0|0O(0|O0O|O|O|O|0|0[O0[|0|0|0]|O
parents

T ] 3 7307 2 el 2 oEf 205 [

QO[O0 |1 (1| 1{1|1|1{T{1|{T{1[1(1]1
children

www.cs.vu.nl/.../Genetic_Algorithms.ppt
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Mutation

< Alter each gene independently with a probability p,,
% p,.is called the mutation rate

< Typically between 1/pop_size and 1/
chromosome_length

parent ] 0 0 0 i 4 i

child O(110(0({1[0{1[1]0(0|0(1]0(1[1[0]0]1

www.cs.vu.nl/.../Genetic_Algorithms.ppt
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Simulated Annealing

< Based on physical concept known as
“annealing” — cooling of a liquid to a solid

< Heat the solid state metal to a high
temperature then cool it down slowly
according to a specific schedule

< Distinctive feature is that it allows uphill
directions

< Random element to search

< Claim to find global minimum in asymptotic
sense
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Simulated Annealing

1.

Start with a random initial guess and (high)
temperature

Perturb the current point through a defined move

Calculate the change in the function value due to
the move made

If function decreases, then accept the new point

If function increases accept the move with a
probability that depends on the current
“temperature”

Update the temperature value by lowering the
temperature

Repeat 2-6 until “Freezing Point” is reached
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COST FUNCTION, C

Convergence of simulated annealing

R ‘/AT INIT_TEMP Unconditional Acceptance

HILL CLIMBING Move accepted with

~~~~~ probabilit
= e-("C/temp

HILL CLIMBING

"

AT FINAL_TEMP

e

NUMBER OF ITERATIONS
Courtesy of P. Akella, www.ecs.umass.edu/ece/labs/vlsicad/ece665/.../Simulated Annealing.ppt
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Direct Search Methods

% Methods that “in their heart” do not use
gradient information, e.g. Nelder-Mead

< Main operation is function comparisons

< Useful whenever the derivative of the objective
function is not available or is too expensive to
compute

< Strictly monotonic
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Generating Set Search Methods

< Subset of Direct Search Methods

< Includes Pattern Search methods as well as
some other variations

< Main idea is to generate a set of search
directions that guarantee descent

< Main differences are in how new step is
chosen and how to choose directions
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Generating Set Search

1:
2
3
4:
D:
6
7
8
9

10:
11:
12:

procedure GSS

Pick a set of search directions Dy
for each d € D,, do,

liat f( A d) Decrease
evaluate (g k Condition
end for S / ............ :
if 3di € Dy s.b3f (2 + Ondy) < [(2r) 7 p( L) then
Tp+1 = T + Apdy Successful
Apt1 = ¢rAy, where ¢, > 1 lteration
else
Tkl = Tk 1 u ful
nsuccessfu
Api1 = 0p Ay, where 0, € (0,1) teration
end if -

13: end procedure

Optimization Seminar March 16, 2016



Pattern Search Dy = {#£e;, tes}

Special thanks to Tammy Kolda for this slide

Optimization Seminar
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Theoretical Properties of GSS

If f(x) is suitably smooth ...
% Guaranteed “good” descent directions

< For unsuccessful iterations, | V f(z;) || is
bounded as a function of the step length A,

<% Can also show: liminfA, =0
< Conclusion:
iminf| Vf(z,) | =0,
l.e. Weak Global Convergence
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Some observations

< GSS methods can use simple or sufficient
decrease

< GSS uses multiple search directions in such
a way as to ensure at least one is a descent
direction

<+ Never uses gradient, but theory does
require gradient is Lipschitz continuous
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Summary

< Practical problems in science and
engineering often exhibit characteristics that
make standard methods difficult/impossible
to use

<+ Many good ideas and a lot of work on
derivative-free optimization

< Can often be competitive with standard
methods
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Future Directions

< Parallel Optimization

< Surrogate Models for expensive functions
< Optimization under uncertainty

<+ Non-smooth optimization

‘0‘ see
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Questions?



Parallel Optimization



Schnabel (1995) identified three levels for
introducing parallelism into optimization

1. Parallelize evaluation of functions, gradients,
and or constraints

2. Parallelize linear algebra

3. Parallelize optimization algorithm at a high
level
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Parallelism is easily introduced when
finite-difference gradients are used

% Option 1 in Schnabel’ s taxonomy

< Components of the gradient can be
computed independently on separate
Processors

< Components of the gradient can be
computed speculatively (Byrd, Schnabel,
Shultz, 1988)
< trial point is accepted 60-80% of the time
< compute-eomponents of the eradient



Parallelize the linear algebra

< Much research in this area
< QOutstanding progress in recent years

< BUT, this is really only useful for large-scale
optimization problems

< If the function evaluation dominates the
computational time, then this option will not
prove effective
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Basic Parallel Pattern Search
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Special thanks to Tammy Kolda for this slide
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Software References

< DOE ACTS Collection
< http://acts.nersc.gov/

<+ APPSPACK
< http://csmr.ca.sandia.gov/projects/apps.html
<+ NEOS — Network Enabled Optimization
Software
< http://www-neos.mcs.anl.gov/neos

< General Software
< http: //saI kachmatech com/B/3/index.shtml
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Parameter identification example

Optimization Seminar

< Find model parameters,
satisfying some bounds, for
which the simulation matches
the observed temperature
profiles

>

< Computing objective function
requires running thermal
analysis code

min (T -T)

s.t. O=sx=u
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Data Fitting Example

< Objective function
consists of computing
the max temperature
difference over 5
curves

Temperature (C)

< Each simulation
Maximumrrggﬂ?gagrrel%)li#grence reqUireS apprOXimately
7 hours on 1 processor

< Uncertainty in both
the measurements and
the model parameters

Rear Electrode
o o
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Derivation of Newton equations

< Build quadratic model

q(x; +5) = f(x)+2(x,) s +55" H(x,)s

<+ Find the minimizer of the quadratic
ming(x) < Vqg(x)=g+Hs=0
Solve Hs, =-g
Set X, =X, +a-s,

< Check how well you did, i.e. is



Newton Methods
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s Fast
convergence
properties

**Good global
convergence
properties

**Quasi-Newton
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Optimized Power Distribution

Target Temp=1027 C
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Temperature fields in a vertical,

stacked-wafer, low-pressure, Vertical Position from Bottom Wafer (in)
chemical-vapor-deposition furnace
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Analytic Gradients vs. Finite-Differences
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General observations

< Many optimization problems have expensive objective
functions

< Objective function requires solution to a large-scale PDE or
similar type of simulation

< One function evaluation can take several CPU hours even
on a parallel processor

< Adding more processors to the function evaluation is not
always efficient or productive

< Many applications do not scale well
< May not even be able to parallelize the objective function
< Black-box functions
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