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General	Op0miza0on	Problem	

Inequality	constraints	

Equality	constraints	

Objec0ve	func0on	min f(x), x 2 Rn

hi(x) = 0

gj(x) � 0
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Some	standard	assump0ons	

v Objec0ve	func0on	has	infinite	(machine)	
precision	

v Objec0ve	func0on	is	smooth	
v First	and	second	deriva0ves	available	

v Both	deriva0ves	are	also	“nice”	

v Constraints	are	linearly	independent	and	
smooth	

v Objec0ve	and	constraint	func0ons	cheap	to	
evaluate	
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General	Philosophy	

1.  Build	an	approximate	model	(usually	
quadra0c)	of	the	nonlinear	objec0ve	
func0on	

2.  Solve	the	model	for	its	minimum	

3.  See	how	well	you	did	and	either	accept	the	
answer	or	throw	it	away	

4.  Repeat	un0l	you	run	out	of	0me/money/
pa0ence	
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Op0mizing	the	performance	of	a	LPCVD	
furnace	

v  The	goal	is	to	find	heater	powers	
that	yield	op0mal	uniform	
temperature	

v  Temperature	uniformity	is	cri0cal	
between	wafers	and	across	a	
wafer	

v  Compu0ng	temperatures	involves	
solving	a	heat	transfer	problem	
with	radia0on	

v  Two-point	boundary	value	
problem	solved	by	finite	
differences	
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Compu0ng	the	temperature	requires	the	
solu0on	of	a	nonlinear	PDE	

v  Independently	controlled	
heater	zones	regulate	
temperature	

v  Adjus0ng	tolerances	in	the	
PDE	solu0on	trades	off	
noise	with	CPU	0me	

v  Larger	tolerances	lead	to	
less	accurate	PDE	solu0ons;	
less	0me	per	func0on	
evalua0on	

Heater zones 

Silicon wafers 
(200 mm dia.) 

Thermocouple 

Quartz pedestal 
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The	goal	is	to	find	heater	powers	that	
yield	op0mal	uniform	temperature	

p is the vector of heater powers,

Ti(p) is the temperature at discretization point i

T ⇤
is the target temperature, and

N is the total number of discretization points

min F (p) =
NX

i=1

(Ti(p)� T ⇤)2,
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Some	observa0ons	

v Nice	simple	objec0ve	func0on	–	quadra0c	
v Box	constraints	

v Easy	problem	to	set	up	

v Analy0c	gradients	are	not	available	but	the	
number	of	heaters	is	small	so	we	can	use	
finite-difference	gradients		

What	could	possibly	go	wrong?	
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v   7 Zone furnace configuration 
v  Quasi-Newton method exhibits “stair-stepping” 
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Lessons	learned	

v Objec0ve	func0on	didn’t	have	infinite	machine	
precision	
v Some0mes	true,	but	many	simula0on-based	op0miza0on	
problems	can	behave	as	if	func0on	was	noisy	

v Objec0ve	func0on	is	smooth	
v  Probably	differen0able,	but	how	do	you	prove	it?	

v What	do	you	do	if	you’re	not	given	deriva0ve	informa0on	

v  Constraints	are	linearly	independent	and	smooth	
v Users	can	some0mes	over	specify	or	incorrectly	guess	
constraints	

v Objec0ve	func0on	not	cheap	(PDE	solve)	
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Deriva0ve-Free	Op0miza0on	

v Realiza0on	that	simula0on-based	
op0miza0on	problems	require	other	
methods	

v Long	history	of	these	types	of	methods	

v Fell	out	of	favor	with	rise	of	Newton-type	
methods	and	computers	
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One	Taxonomy	

v  Es0ma0on		
v  Finite	Difference	

v  Implicit	Filtering	
(Mifflin,	Kelley)	

v Model-Based		
v  Powell	

v  Conn,	Scheinberg,	Toint	

v  Physics/Bio	Inspired	
v  Simulated	Annealing	

v Gene0c	Algorithms	

v  Direct	Search	
v Nelder-Mead	
Simplex	Method	

v  PaJern	Search		
v Box	
v Hooke	&	Jeeves	
v Torczon	

v  Similar	Methods	
v Wenci	
v Lucidi	&	Sciandrone	
v García-Palomares	and	
Rodríguez	



Op$miza$on	Seminar 	 	 		March	16,	2016	

One	Taxonomy	

v  Es0ma0on		
v  Finite	Difference	

v  Implicit	Filtering	
(Mifflin,	Kelley)	

v Model-Based		
v  Powell	

v  Conn,	Scheinberg,	Toint	

v  Physics/Bio	Inspired	
v  Simulated	Annealing	

v Gene0c	Algorithms	

v  Direct	Search	
v Nelder-Mead	
Simplex	Method	

v  PaJern	Search		
v Box	
v Hooke	&	Jeeves	
v Torczon	

v  Similar	Methods	
v Wenci	
v Lucidi	&	Sciandrone	
v García-Palomares	and	
Rodríguez	



Op$miza$on	Seminar 	 	 		March	16,	2016	

Early	History	(1960’s)	

v Nelder-Mead	Simplex	(1965)	
v One	of	earliest	examples	of	a	direct	
search	method	

v Huge	success,	especially	in	engineering	

v Possibly	the	most	highly	cited	
op0miza0on	method	
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v  Start with a simplex (polytope in n+1 
dimensions) 

v  Compute function value at vertices and order 
the function values 

v  4 Basic Steps 
1.  Reflect about the centroid 
2.  Expansion of simplex if really good 
3.  Contract if reflection didn’t work 
4.  Shrink the simplex if all else fails 

Nelder-Mead	Simplex	
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Nelder-Mead	Reflec0on	Step	

worst	point	
(highest	func0on	value)	

reflec0on	step	
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Nelder-Mead	Expansion	Step	

v If	reflec0on	resulted	in	best	(lowest)	value	so	
far,	try	an	expansion	

v else,	if	reflec0on	helped	at	all,	keep	it	

expansion	step	
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Nelder-Mead	Contrac0on	Step	

v If	reflec0on	didn’t	help	try	a	contrac0on	

contrac0on	step	

worst	point	
(highest	func0on	value)	
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Nelder-Mead	Shrink	Step	

v If	all	else	fails	shrink	the	simplex	around	
the	best	point	

best	point	
(lowest	func0on	value)	worst	point	

(highest	func0on	value)	
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Basic	Steps	of	Nelder	Mead	

v Reflect,	Expand,	Contract	
	

By Original uploader was Simiprof at en.wikipedia - Transferred from en.wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/
w/index.php?curid=4027386 
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Gene0c	Algorithms	

v Based	on	evolu0onary	principles	
v Can	be	used	for	discrete	variable	problems	

v Random	element	to	search	

v Claim	to	be	good	for	global	op0miza0on	
problems	
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Gene0c	Algorithms	

1.   Encode	the	“problem”	in	a	binary	string	
2.  Randomly	generate	a	“popula0on”	
3.  Calculate	fitness	of	each	member	of	the	

popula0on	
4.   Select	pairs	of	parent	strings	based	on	fitness	

5.  Apply	crossover	and	muta$on	to	generate	a	new	
popula0on	of	offspring	

6.  Repeat	step	3	to	5	un0l	op0mal	
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Encoding	Methods	

v  Binary	Encoding	–	Most	common	method	of	encoding.	
Chromosomes	are	strings	of	1s	and	0s	and	each	posi0on	in	
the	chromosome	represents	a	par0cular	characteris0c	of	the	
problem.	

	
	

	

11111110000000011111	Chromosome	B	

10110010110011100101	Chromosome	A	
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Crossover	

v  Choose	a	random	point	on	the	two	parents	
v  Split	parents	at	this	crossover	point	
v  Create	children	by	exchanging	tails	

www.cs.vu.nl/.../Genetic_Algorithms.ppt 
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Muta0on	

v  Alter	each	gene	independently	with	a	probability	pm		

v  pm	is	called	the	muta0on	rate	
v Typically	between	1/pop_size	and	1/	
chromosome_length	

www.cs.vu.nl/.../Genetic_Algorithms.ppt 
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Simulated	Annealing	

v Based	on	physical	concept	known	as	
“annealing”	–	cooling	of	a	liquid	to	a	solid	

v Heat	the	solid	state	metal	to	a	high	
temperature	then	cool	it	down	slowly	
according	to	a	specific	schedule	

v Dis0nc0ve	feature	is	that	it	allows	uphill	
direc0ons	

v Random	element	to	search	

v Claim	to	find	global	minimum	in	asympto0c	
sense	
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Simulated	Annealing	
1.  Start	with	a	random	ini0al	guess	and	(high)	

temperature		
2.  Perturb	the	current	point	through	a	defined	move	
3.  Calculate	the	change	in	the	func0on	value	due	to	

the	move	made	
4.  If	func0on	decreases,	then	accept	the	new	point	
5.  If	func0on	increases	accept	the	move	with	a	

probability	that	depends	on	the	current	
“temperature” 	

6.  Update	the	temperature	value	by	lowering	the	
temperature	

7.  Repeat	2-6	un0l	“Freezing	Point”	is	reached	
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Convergence	of	simulated	annealing		
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Courtesy of P. Akella, www.ecs.umass.edu/ece/labs/vlsicad/ece665/.../SimulatedAnnealing.ppt 
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Direct	Search	Methods	

v Methods	that	“in	their	heart”	do	not	use	
gradient	informa0on,	e.g.	Nelder-Mead	

v Main	opera0on	is	func0on	comparisons	

v Useful	whenever	the	deriva0ve	of	the	objec0ve	
func0on	is	not	available	or	is	too	expensive	to	
compute	

v Strictly	monotonic	
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Genera0ng	Set	Search	Methods	

v Subset	of	Direct	Search	Methods	
v Includes	PaJern	Search	methods	as	well	as	
some	other	varia0ons	

v Main	idea	is	to	generate	a	set	of	search	
direc0ons	that	guarantee	descent	

v Main	differences	are	in	how	new	step	is	
chosen	and	how	to	choose	direc0ons	
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Genera0ng	Set	Search	
1: procedure GSS
2: Pick a set of search directions Dk

3: for each d 2 Dk do,

4: evaluate f(xk +�kd)

5: end for

6: if 9dk 2 Dk s.t. f(xk +�kdk) < f(xk)� ⇢(�k) then

7: xk+1 = xk +�kdk

8: �k+1 = �k�k, where �k � 1

9: else

10: xk+1 = xk

11: �k+1 = ✓k�k, where ✓k 2 (0, 1)

12: end if

13: end procedure

Successful	
Itera0on	

Unsuccessful	
Itera0on	

Decrease	
Condi0on	
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PaJern	Search	

Special thanks to Tammy Kolda for this slide 

Dk = {±e1,±e2}
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Theore0cal	Proper0es	of	GSS	

If	f(x)	is	suitably	smooth	...	

v Guaranteed	“good”	descent	direc0ons		

v For	unsuccessful	itera0ons,	k rf(xk)	k	is	
bounded	as	a	func0on	of	the	step	length	Δk		

v Can	also	show:	 	lim	inf	Δk	=	0	

v Conclusion:	 	 		

lim	inf	k rf(xk)	k = 0,		
	 i.e.	Weak	Global	Convergence	
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Some	observa0ons	

v GSS	methods	can	use	simple	or	sufficient	
decrease	

v GSS	uses	mul0ple	search	direc0ons	in	such	
a	way	as	to	ensure	at	least	one	is	a	descent	
direc0on	

v Never	uses	gradient,	but	theory	does	
require	gradient	is	Lipschitz	con0nuous	
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Summary	

v Prac0cal	problems	in	science	and	
engineering	osen	exhibit	characteris0cs	that	
make	standard	methods	difficult/impossible	
to	use	

v Many	good	ideas	and	a	lot	of	work	on	
deriva0ve-free	op0miza0on	

v Can	osen	be	compe00ve	with	standard	
methods	
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Future	Direc0ons	

v Parallel	Op0miza0on	
v Surrogate	Models	for	expensive	func0ons	

v Op0miza0on	under	uncertainty	

v Non-smooth	op0miza0on	

v ...	



Ques0ons?	



Parallel	Op0miza0on	
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Schnabel	(1995)	iden0fied	three	levels	for	
introducing	parallelism	into	op0miza0on	

1.  Parallelize	evalua0on	of	func0ons,	gradients,	
and	or	constraints	

2.  Parallelize	linear	algebra	

3.  Parallelize	op0miza0on	algorithm	at	a	high	
level	
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Parallelism	is	easily	introduced	when	
finite-difference	gradients	are	used	

v Op0on	1	in	Schnabel’s	taxonomy	
	

v Components	of	the	gradient	can	be	
computed	independently	on	separate	
processors	

v Components	of	the	gradient	can	be	
computed	specula0vely	(Byrd,	Schnabel,	
Shultz,	1988)	
v trial	point	is	accepted	60-80%	of	the	0me	
v compute	components	of	the	gradient	
simultaneously	with	the	func0on	value	

v difficult	to	do	beJer	than	this	strategy	
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Parallelize	the	linear	algebra		

v Much	research	in	this	area	
v Outstanding	progress	in	recent	years	

v BUT,	this	is	really	only	useful	for	large-scale	
op0miza0on	problems	
v If	the	func0on	evalua0on	dominates	the	
computa0onal	0me,	then	this	op0on	will	not	
prove	effec0ve	
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xbest

Δbest

Basic	Parallel	PaJern	Search	

Special thanks to Tammy Kolda for this slide 



Op$miza$on	Seminar 	 	 		March	16,	2016	
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Sosware	References	

v DOE	ACTS	Collec0on	
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v APPSPACK	
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v More´	and	Wright,	Op0miza0on	Sosware	
Guide,	SIAM,	1993	
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Parameter	iden0fica0on	example	

v  Find	model	parameters,	
sa0sfying	some	bounds,	for	
which	the	simula0on	matches	
the	observed	temperature	
profiles	

v  Compu0ng	objec0ve	func0on	
requires	running	thermal	
analysis	code	
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Data	Fiyng	Example	
v Objec0ve	func0on	
consists	of	compu0ng	
the	max	temperature	
difference	over	5	
curves	

v  Each	simula0on	
requires	approximately	
7	hours	on	1	processor	

v Uncertainty	in	both	
the	measurements	and	
the	model	parameters	
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Deriva0on	of	Newton	equa0ons	

v  Build	quadra0c	model	

v  Find	the	minimizer	of	the	quadra0c	

	
v  Check	how	well	you	did,	i.e.	is	
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Newton	Methods	

v Fast	
convergence	
proper0es	

v Good	global	
convergence	
proper0es	

v Quasi-Newton	
approxima0on
s	work	well	in	
prac0ce	

v  Inherently serial 
v  Difficulties with 

noisy functions 

xN 

xc 

xCP 
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General	observa0ons	

v  Many	op0miza0on	problems	have	expensive	objec0ve	
func0ons	

v Objec0ve	func0on	requires	solu0on	to	a	large-scale	PDE	or	
similar	type	of	simula0on	

v One	func0on	evalua0on	can	take	several	CPU	hours	even	
on	a	parallel	processor	

v  Adding	more	processors	to	the	func0on	evalua0on	is	not	
always	efficient	or	produc0ve	

v Many	applica0ons	do	not	scale	well	

v  May	not	even	be	able	to	parallelize	the	objec0ve	func0on	
v  Black-box	func0ons	


