A Short Tour of Derivative-Free Optimization

> Juan Meza Applied Mathematics UC Merced

Outline

- Motivation and Example Problems
- Taxonomy of Derivative Free Optimization
- Nelder-Mead Simplex
- Genetic Algorithms/Simulated Annealing
- Generating Set Search & Pattern Search
- Future directions

General Optimization Problem

 $\begin{array}{ll} \min & f(x), x \in \mathbb{R}^n & \mbox{Objective function} \\ & h_i(x) = 0 & \mbox{Equality constraints} \\ & g_j(x) \geq 0 & \mbox{Inequality constraints} \end{array}$

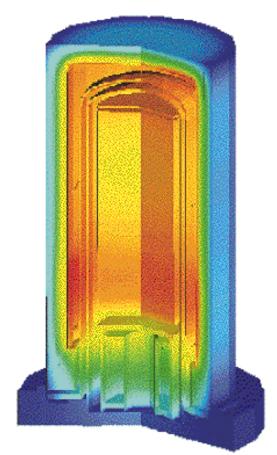
Some standard assumptions

- Objective function has infinite (machine) precision
- Objective function is smooth
 - First and second derivatives available
 - Both derivatives are also "nice"
- Constraints are linearly independent and smooth
- Objective and constraint functions cheap to evaluate

General Philosophy

- Build an approximate model (usually quadratic) of the nonlinear objective function
- 2. Solve the model for its minimum
- 3. See how well you did and either accept the answer or throw it away
- 4. Repeat until you run out of time/money/ patience

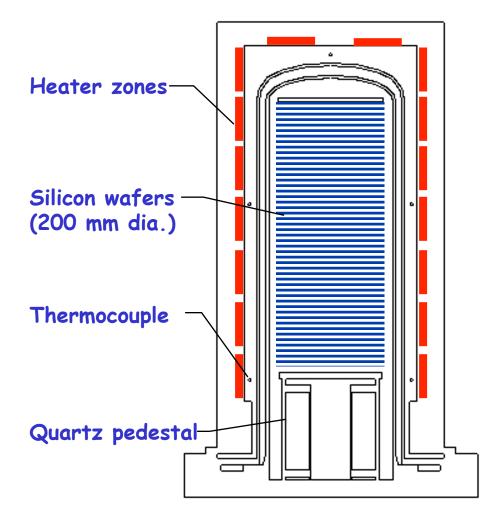
Optimizing the performance of a LPCVD furnace



Temperature fields in a vertical, stacked-wafer, low-pressure, chemical-vapor-deposition furnace

- The goal is to find heater powers that yield optimal uniform temperature
- Temperature uniformity is critical between wafers and across a wafer
- Computing temperatures involves solving a heat transfer problem with radiation
- Two-point boundary value problem solved by finite differences

Computing the temperature requires the solution of a nonlinear PDE



- Independently controlled heater zones regulate temperature
- Adjusting tolerances in the PDE solution trades off noise with CPU time
- Larger tolerances lead to less accurate PDE solutions; less time per function evaluation

The goal is to find heater powers that yield optimal uniform temperature

min
$$F(p) = \sum_{i=1}^{N} (T_i(p) - T^*)^2,$$

p is the vector of heater powers,

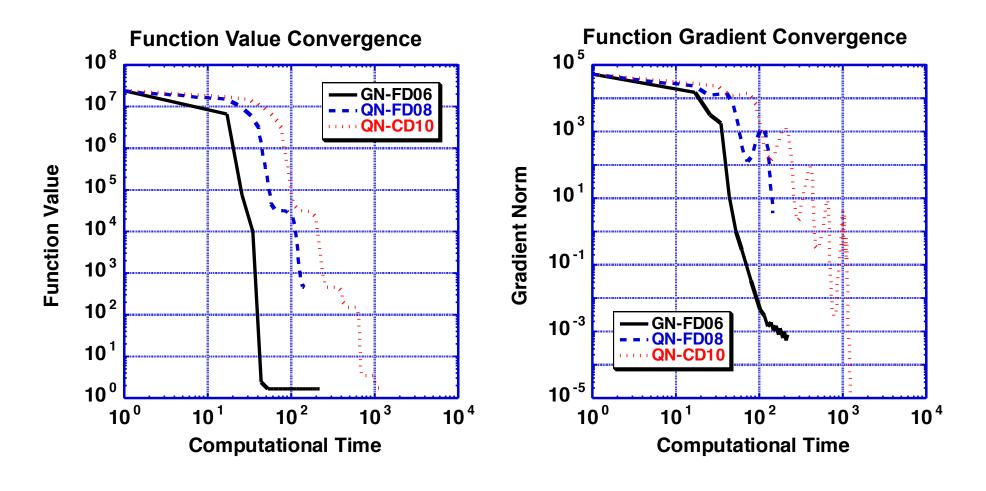
- $T_i(p)$ is the temperature at discretization point *i*
 - T^* is the target temperature, and
 - N is the total number of discretization points

Some observations

- Nice simple objective function quadratic
- Box constraints
- Easy problem to set up
- Analytic gradients are not available but the number of heaters is small so we can use finite-difference gradients

What could possibly go wrong?

Finite-Difference Gradients



7 Zone furnace configuration
Quasi-Newton method exhibits "stair-stepping"

Optimization Seminar

Lessons learned

- Objective function didn't have infinite machine precision
 - Sometimes true, but many simulation-based optimization problems can behave as if function was noisy
- Objective function is smooth
 - Probably differentiable, but how do you prove it?
 - What do you do if you're not given derivative information
- Constraints are linearly independent and smooth
 - Users can sometimes over specify or incorrectly guess constraints
- Objective function not cheap (PDE solve)

Derivative-Free Optimization

- Realization that simulation-based optimization problems require other methods
- Long history of these types of methods
- Fell out of favor with rise of Newton-type methods and computers

One Taxonomy

- Estimation
 - Finite Difference
 - Implicit Filtering (Mifflin, Kelley)
- Model-Based
 - Powell
 - Conn, Scheinberg, Toint
- Physics/Bio Inspired
 - Simulated Annealing
 - Genetic Algorithms

- Direct Search
 - Nelder-Mead
 Simplex Method
 - Pattern Search
 - Box
 - Hooke & Jeeves
 - Torczon
 - Similar Methods
 - Wenci
 - Lucidi & Sciandrone
 - García-Palomares and Rodríguez

One Taxonomy

- Stimation
 - Finite Difference
 - Implicit Filtering (Mifflin, Kelley)
- Model-Based
 - Powell
 - Conn, Scheinberg, Toint
- Physics/Bio Inspired
 - Simulated Annealing
 - Genetic Algorithms

- Direct Search
 - Nelder-Mead
 Simplex Method
 - Pattern Search
 - Box
 - Hooke & Jeeves
 - Torczon
 - Similar MethodsWenci
 - & Lucidi & Sciandrone
 - García-Palomares and Rodríguez

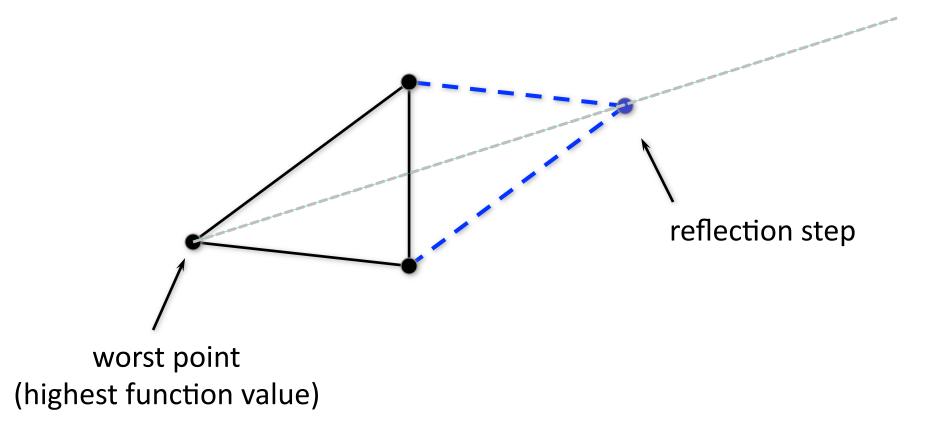
Early History (1960's)

- Nelder-Mead Simplex (1965)
- One of earliest examples of a direct search method
- Huge success, especially in engineering
- Possibly the most highly cited optimization method

Nelder-Mead Simplex

- Start with a simplex (polytope in n+1 dimensions)
- Compute function value at vertices and order the function values
- ✤ 4 Basic Steps
 - 1. Reflect about the centroid
 - 2. Expansion of simplex if really good
 - 3. Contract if reflection didn't work
 - 4. Shrink the simplex if all else fails

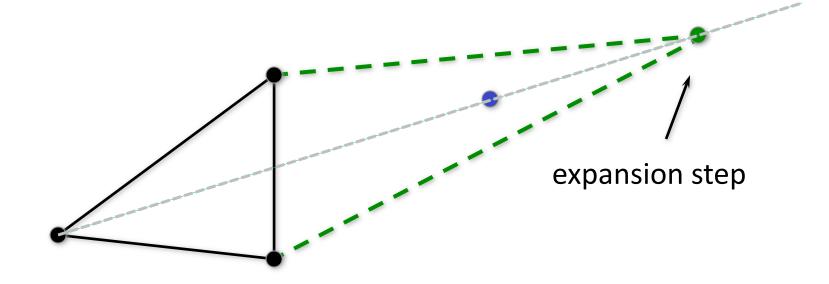
Nelder-Mead Reflection Step



Optimization Seminar

Nelder-Mead Expansion Step

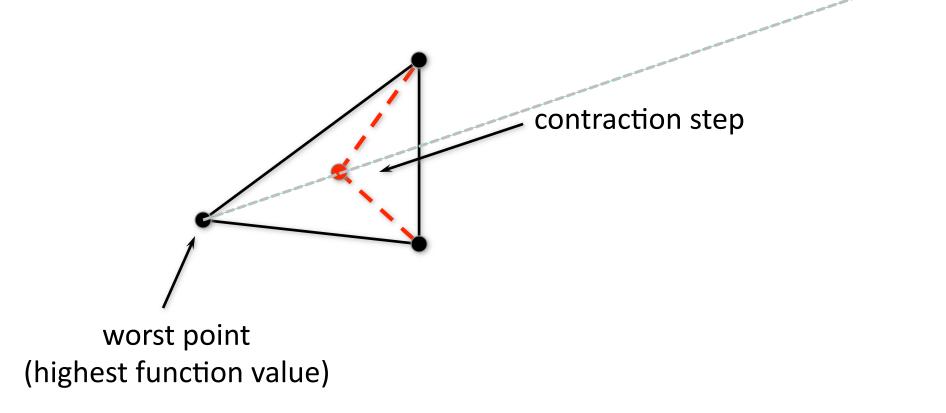
If reflection resulted in best (lowest) value so far, try an expansion



else, if reflection helped at all, keep it

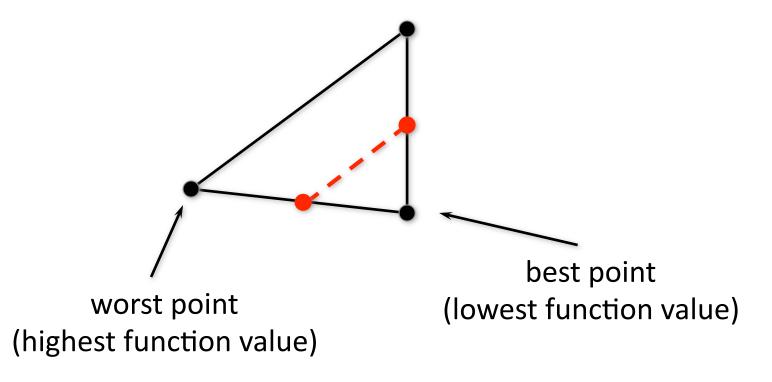
Nelder-Mead Contraction Step

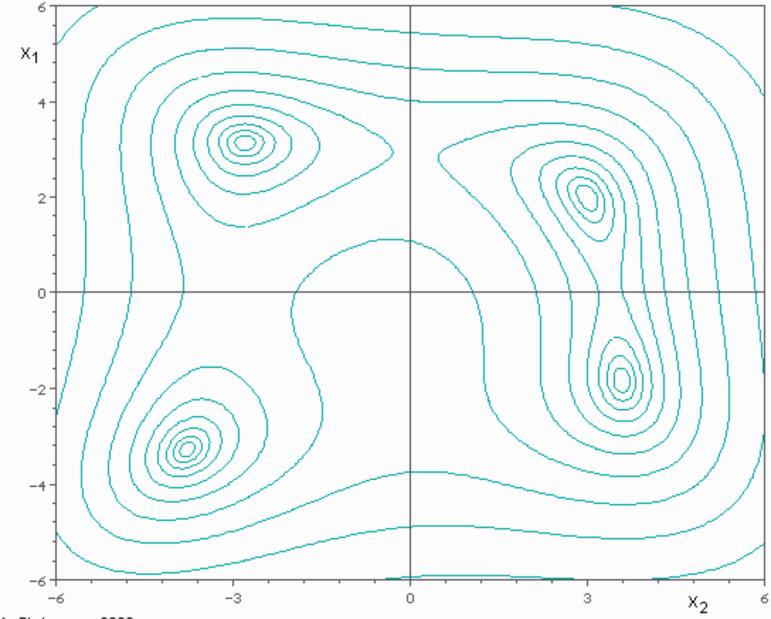
If reflection didn't help try a contraction



Nelder-Mead Shrink Step

If all else fails shrink the simplex around the best point





by Original uploader was Simiprof at en.wikipedia - Transferred from en.wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/ Optimization Seminat/index.php?curid=4027386 March 16, 2016

Genetic Algorithms

- Based on evolutionary principles
- Can be used for discrete variable problems
- Random element to search
- Claim to be good for global optimization problems

Genetic Algorithms

- 1. Encode the "problem" in a binary string
- 2. Randomly generate a "population"
- 3. Calculate fitness of each member of the population
- 4. Select pairs of parent strings based on fitness
- 5. Apply **crossover** and **mutation** to generate a new population of offspring
- 6. Repeat step 3 to 5 until optimal

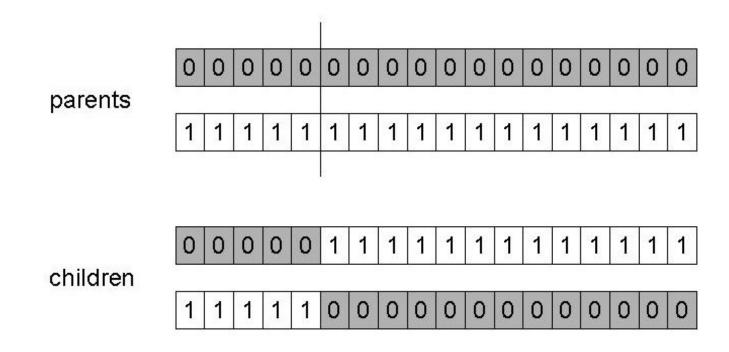
Encoding Methods

Binary Encoding – Most common method of encoding. Chromosomes are strings of 1s and 0s and each position in the chromosome represents a particular characteristic of the problem.

Chromosome A	10110010110011100101
Chromosome B	1111111000000011111

Crossover

- Choose a random point on the two parents
- Split parents at this crossover point
- Create children by exchanging tails

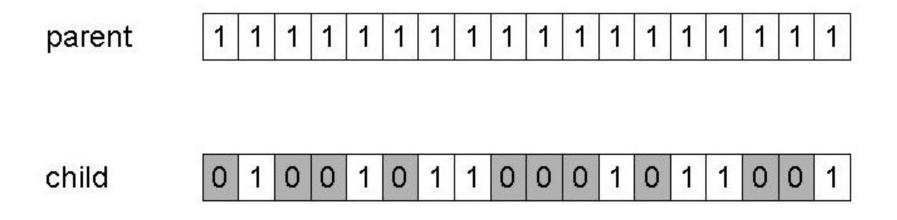


www.cs.vu.nl/.../Genetic_Algorithms.ppt

Optimization Seminar

Mutation

- * Alter each gene independently with a probability p_m
- $\bullet p_m$ is called the mutation rate
 - Typically between 1/pop_size and 1/ chromosome_length



www.cs.vu.nl/.../Genetic_Algorithms.ppt

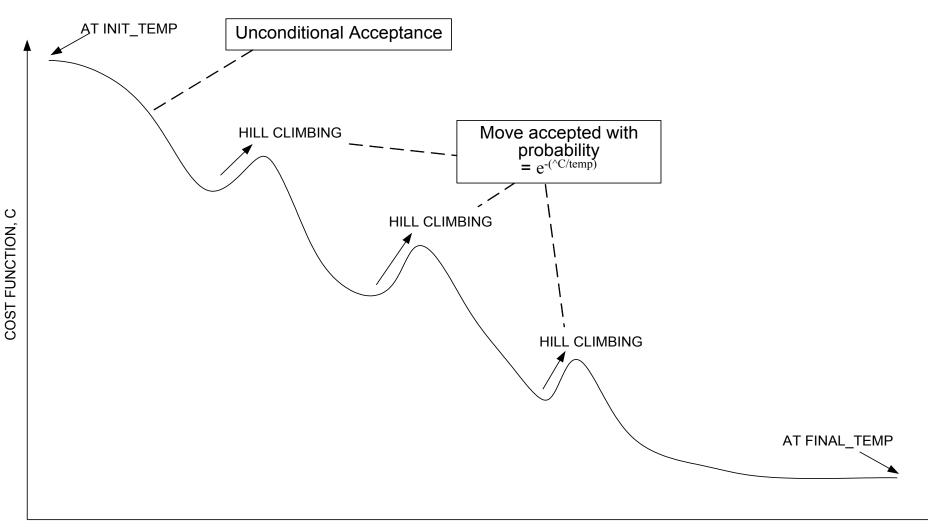
Simulated Annealing

- Based on physical concept known as
 "annealing" cooling of a liquid to a solid
- Heat the solid state metal to a high temperature then cool it down slowly according to a specific schedule
- Distinctive feature is that it allows uphill directions
- Random element to search
- Claim to find global minimum in asymptotic sense

Simulated Annealing

- Start with a random initial guess and (high) temperature
- 2. Perturb the current point through a defined move
- 3. Calculate the change in the function value due to the move made
- 4. If function decreases, then accept the new point
- 5. If function increases accept the move with a probability that depends on the current "temperature"
- 6. Update the temperature value by lowering the temperature
- 7. Repeat 2-6 until "Freezing Point" is reached

Convergence of simulated annealing



NUMBER OF ITERATIONS

Courtesy of P. Akella, www.ecs.umass.edu/ece/labs/vlsicad/ece665/.../SimulatedAnnealing.ppt

Direct Search Methods

- Methods that "in their heart" do not use gradient information, e.g. Nelder-Mead
- Main operation is function comparisons
- Useful whenever the derivative of the objective function is not available or is too expensive to compute
- Strictly monotonic

Generating Set Search Methods

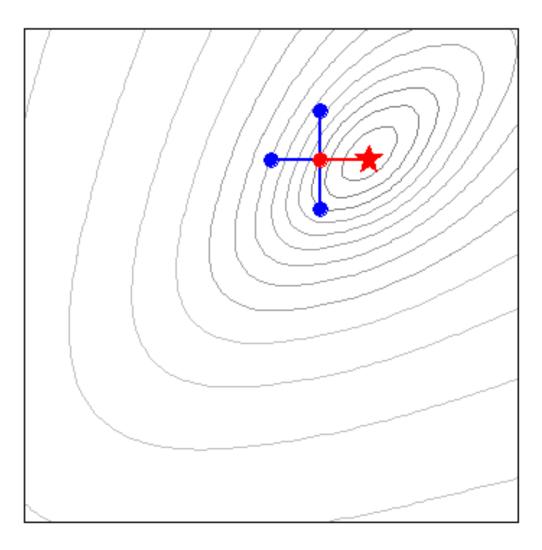
- Subset of Direct Search Methods
- Includes Pattern Search methods as well as some other variations
- Main idea is to generate a set of search directions that guarantee descent
- Main differences are in how new step is chosen and how to choose directions

Generating Set Search

1: procedure GSS
2: Pick a set of search directions
$$D_k$$

3: for each $d \in D_k$ do,
4: evaluate $f(x_k + \Delta_k d)$
5: end for
6: if $\exists d_k \in D_k$ s.t. $f(x_k + \Delta_k d_k) < f(x_k) - \rho(\Delta_k)$ then
7: $x_{k+1} = x_k + \Delta_k d_k$
8: $\Delta_{k+1} = \phi_k \Delta_k$, where $\phi_k \ge 1$
9: else
10: $x_{k+1} = x_k$
11: $\Delta_{k+1} = \theta_k \Delta_k$, where $\theta_k \in (0, 1)$
12: end if
13: end procedure

Pattern Search $D_k = \{\pm e_1, \pm e_2\}$



Theoretical Properties of GSS

- If f(x) is suitably smooth ...
- Guaranteed "good" descent directions
- ✤ For unsuccessful iterations, $\| \nabla f(x_k) \|$ is bounded as a function of the step length Δ_k
- Can also show: $\liminf \Delta_k = 0$
- Conclusion:

lim inf $\| \nabla f(x_k) \| = 0$, i.e. Weak Global Convergence

Some observations

- GSS methods can use simple or sufficient decrease
- GSS uses multiple search directions in such a way as to ensure at least one is a descent direction
- Never uses gradient, but theory does require gradient is Lipschitz continuous

Summary

- Practical problems in science and engineering often exhibit characteristics that make standard methods difficult/impossible to use
- Many good ideas and a lot of work on derivative-free optimization
- Can often be competitive with standard methods

Future Directions

- Parallel Optimization
- Surrogate Models for expensive functions
- Optimization under uncertainty
- Non-smooth optimization

Questions?

Parallel Optimization

Schnabel (1995) identified three levels for introducing parallelism into optimization

- 1. Parallelize evaluation of functions, gradients, and or constraints
- 2. Parallelize linear algebra
- 3. Parallelize optimization algorithm at a high level

Parallelism is easily introduced when finite-difference gradients are used

Option 1 in Schnabel's taxonomy

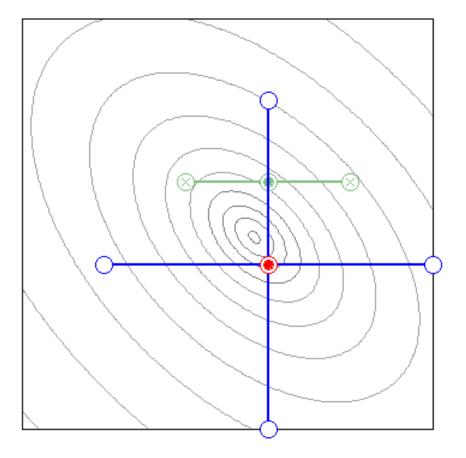
- Components of the gradient can be computed independently on separate processors
- Components of the gradient can be computed speculatively (Byrd, Schnabel, Shultz, 1988)

trial point is accepted 60-80% of the time
 compute components of the gradient

Parallelize the linear algebra

- Much research in this area
- Outstanding progress in recent years
- BUT, this is really only useful for large-scale optimization problems
 - If the function evaluation dominates the computational time, then this option will not prove effective

Basic Parallel Pattern Search



Special thanks to Tammy Kolda for this slide

Optimization References

- Dennis and Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, 1983
- Gill, Murray, Wright, *Practical Optimization*, Academic Press, 1981
- Stephen J. Wright, *Primal-Dual Interior-Point Methods*, SIAM 1997
- El-Bakry, Tapia, Tsuchiya, Zhang, On the Formulation and Theory of the Newton Interior-Point Method for Nonlinear Programming, JOTA, Vol. 89, No.3, pp.507-541, 1996
- M.J.D. Powell, Direct search algorithms for optimization calculations, Acta Numerica 1998
- M.H. Wright, Direct search methods: once scorned, now respectable, Numerical Analysis, 1995
- P. D. Hough, T. G. Kolda, and V. J. Torczon. Asynchronous Parallel Pattern Search for Nonlinear Optimization. SIAM J. Scientific Computing, 23(1):134-156, June 2001

Software References

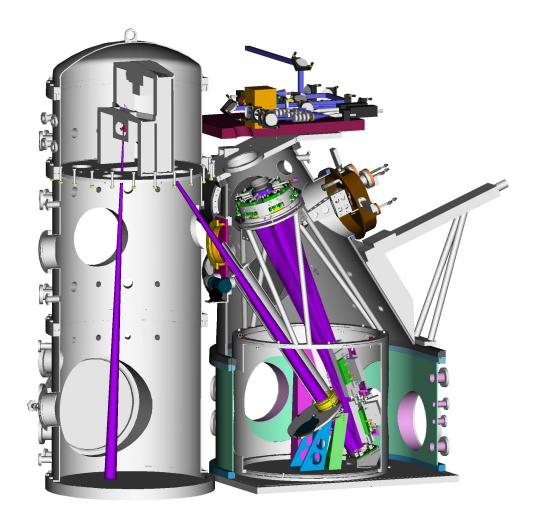
- DOE ACTS Collection
 http://acts.nersc.gov/
- APPSPACK
 - http://csmr.ca.sandia.gov/projects/apps.html
- NEOS Network Enabled Optimization Software
 - http://www-neos.mcs.anl.gov/neos
- General Software

http://sal.kachinatech.com/B/3/index.shtml

Optimization Seminar

March 16, 2016

Parameter identification example

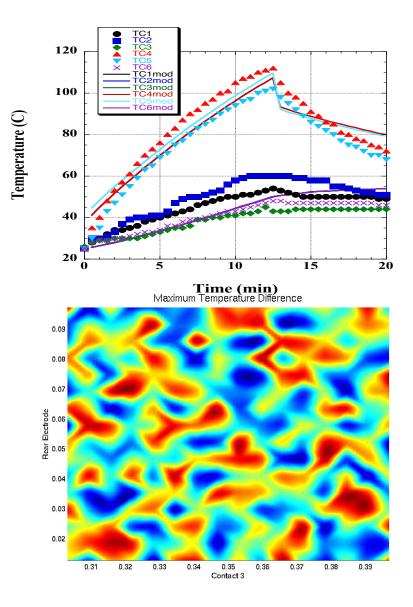


- Find model parameters, satisfying some bounds, for which the simulation matches the observed temperature profiles
- Computing objective function requires running thermal analysis code

$$\min_{x} \sum_{i=1}^{N} (T_i(x) - T_i^*)^2$$
s. t. $0 \le x \le u$

Optimization Seminar

Data Fitting Example



- Objective function consists of computing the max temperature difference over 5 curves
- Each simulation
 requires approximately
 7 hours on 1 processor
- Uncertainty in both the measurements and the model parameters

Derivation of Newton equations

* Build quadratic model $q(x_k + s) = f(x_k) + g(x_k)^T s + \frac{1}{2}s^T H(x_k)s$

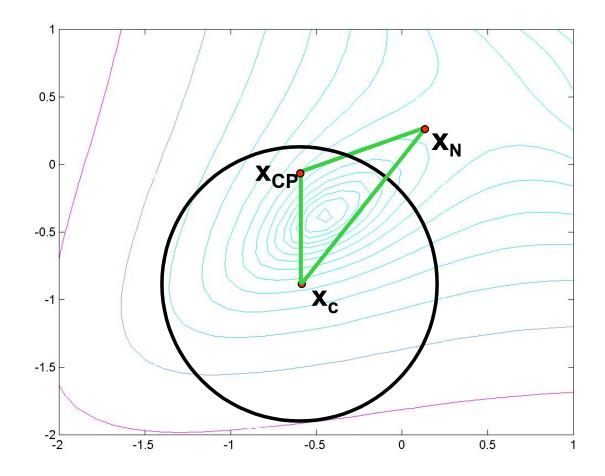
* Find the minimizer of the quadratic $\min q(x) \iff \nabla q(x) = g + Hs = 0$ Solve $Hs_k = -g$ Set $x_{k+1} = x_k + \alpha \cdot s_k$

Check how well you did, i.e. is

 $f(x_{k+1}) < f(x_k)$

Optimization Seminar

Newton Methods

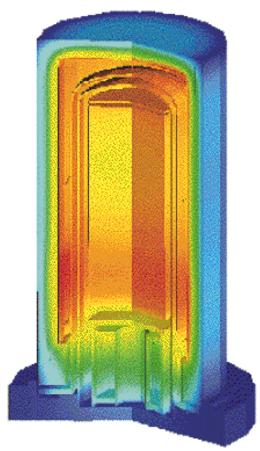


Fast
 convergence
 properties

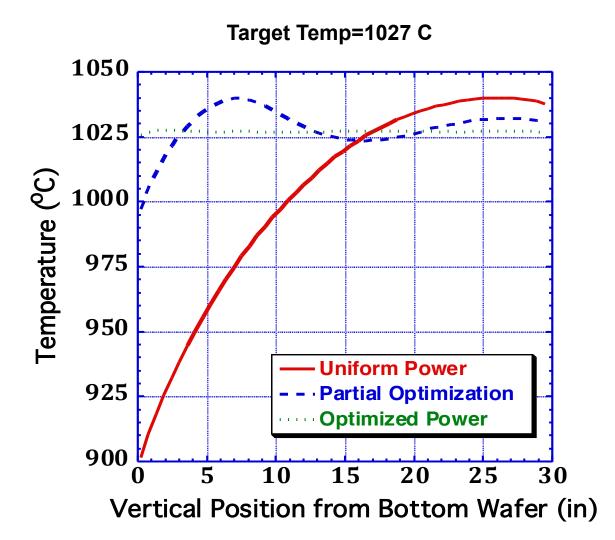
 Good global
 convergence

- properties
- Quasi-Newton
- * Appenently servial
- * Difforthies with poisy functions

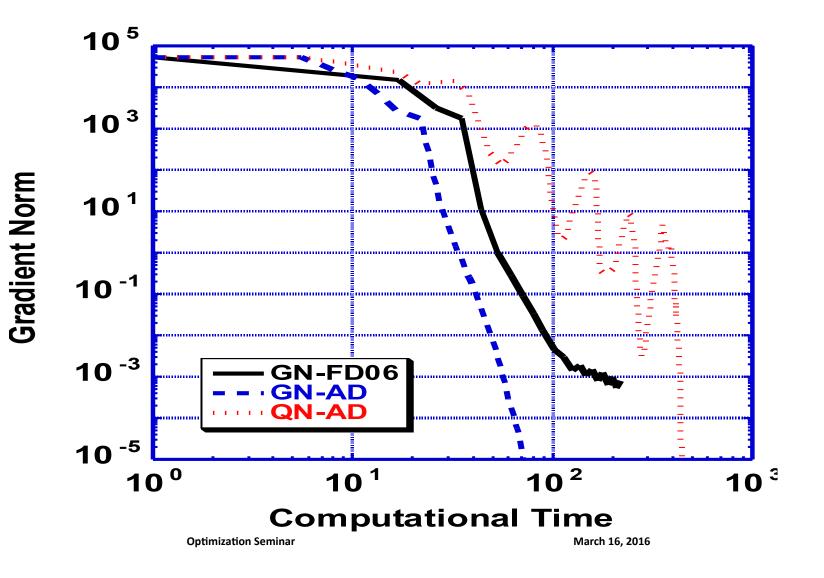
Optimized Power Distribution



Temperature fields in a vertical, stacked-wafer, low-pressure, chemical-vapor-deposition furnace



Analytic Gradients vs. Finite-Differences



General observations

- Many optimization problems have expensive objective functions
 - Objective function requires solution to a large-scale PDE or similar type of simulation
 - One function evaluation can take several CPU hours even on a parallel processor
- Adding more processors to the function evaluation is not always efficient or productive
 - Many applications do not scale well
- May not even be able to parallelize the objective function
 - Black-box functions