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What do all of these have in common?
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On using mathematics for chemistry

Every attempt to employ mathematical methods 
in the study of chemical questions must be 
considered profoundly irrational and contrary to 
the spirit of chemistry. If mathematical analysis 
should ever hold a prominent place in chemistry – 
an aberration which is happily almost 
impossible – it would occasion a rapid and 
widespread degeneration of that science.

Auguste Comte, 1830
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100 years later – the problem is solved!

...in the Schrödinger equation we very nearly have the 
mathematical foundation for the solution of the whole 
problem of atomic and molecular structure ...

almost

…the problem of the many bodies contained in the atom 
and the molecule cannot be completely solved without a 
great further development in mathematical technique.

G.N. Lewis, J. Chem. Phys. 1, 17 (1933)
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• Ψi contains all the information needed to study a system

• |Ψi|2 probability density of finding electrons at a certain state

• Ei quantized energy

• Computational work goes as 103N , where N is the number of electrons
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Many-body Schrödinger equation
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Density Functional Theory

The unknown is simple – the electron density,
Hohenberg-Kohn Theory
 There is a unique mapping between the ground 

state energy and density
 Exact form of the functional is unknown

Independent particle model
 Electrons move independently in an average 

effective potential field
 Add correction for correlation

Good compromise between accuracy and feasibility

ρ
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DFT codes play a major role in 
computational science

9,660 nodes; 38,640 2.3 GHz 
cores 
356 Tflops/s peak
DFT methods account for 75% 
of the materials sciences 
simulations at NERSC, totaling 
over 5 million hours of 
computer time in 2006

 Franklin (NERSC-5): Cray XT4
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Fast forward to today: we can now simulate 
realistic nanosystems

Advances in density functional theory 
coupled with multinode 
computational clusters now enable 
accurate simulation of the behavior of 
multi-thousand atom complexes that 
mediate the electronic and ionic 
transfers of solar energy conversion. 
These new and emerging nanoscience 
capabilities bring a fundamental 
understanding of the atomic and 
molecular processes of solar energy 
utilization within reach.

Basic Research Needs for Solar 
Energy Utilization,
Report of the BES Workshop on Solar 
Energy Utilization,April 18-21, 2005

The calculated dipole moment of a 2633 atom 
CdSe quantum rod, Cd961Se724H948. Using 2560 
processors at NERSC the calculation took about 
30 hours.

Wang, Zhao, Meza, Phys. Rev. B, 77, 165113 (2008)
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Brief Review of 
Fundamental Equations
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Kohn-Sham Formulation

Use N noninteracting electrons as a reference
Replace many-particle wavefunctions,    , with single-
particle wavefunctions, 
Write Kohn-Sham total energy as:

Exchange-correlation term,       , contains quantum 
mechanical contributions, plus part of K.E. not covered by 
first term when using single-particle wavefunctions
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Hψi = εiψi, i = 1, 2, ..., ne
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Kohn-Sham Equations

Goal is to find the ground state energy by minimizing 
total energy,
Leads to:

Etotal



• Finite difference ψ′(rj) ≈ [ψ(rj + h)− ψ(rj − h)]/h

• Finite elements

ψ(r) ≈
nX

j

αjφj(r), φj(r) functions with local support

• Local orbital method (good for molecules)

– Choose φj(r) as Gaussian or other “nice” functions

• Planewave expansion

– Choose φj(r) as eigj ·r
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Discretization Options



min
s.t.X∗X=Ine

EKS(X) ≡ Ekinetic(X) + Eion(X) + EHartree(X) + Exc(X),

Ekinetic =
1
2
trace(X∗LX)

Eionic = trace(XVionX∗)

EHartree =
1
2
ρ(X)T L†ρ(X)

Exc = ρ(X)T (µxc[ρ(X)])
ρ(X) = diag(XX∗)
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Finite Dimensional Problem

We want to find the ground state energy

After discretization we have:

where                           ,

minE[{ψi}] =
1
2

ne∑

i=1

∫

Ω
|∇ψi|2 +

∫

Ω
Vionρ +

1
2

∫

Ω

ρ(r)ρ(r
′
)

|r − r′ | drdr
′
+ Exc(ρ)

X

ne

N



C    O    M    P    U    T    A    T    I    O    N    A    L        R    E    S    E    A    R    C    H        D    I    V    I    S    I    O    N

KKT Conditions

KKT conditions

Leads to Discretized Kohn-Sham equations

∇XL(X,Λ) = 0,

X∗X = Ine .

H(X)X = XΛ,

X∗X = Ine ,

H(X) =
1
2
L + Vion + Diag (L†ρ(X)) + Diag gxc(ρ(X))
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Approaches for solving the 
Kohn-Sham Equations
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Solving the Kohn-Sham equations

Self-Consistent Field (SCF) iteration
 view as a linear eigenvalue problem
 need to precondition
 usually used with other acceleration techniques to 

improve convergence
 no good convergence theory

Direct Constrained Minimization
 minimize the total energy directly
 pose as a constrained optimization problem
 also requires globalization techniques

Invariance property

E(XQ) = E(X)
H(XQ) = H(X)

for any Q∗Q = Ine
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Basic SCF Iteration
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Overall Complexity
Major computational work 
(for plane wave codes):

3D FFT
Orthogonalization
Nonlocal potential

Parallel efficiencies can be 
quite high
May converge slowly and 
sometimes doesn’t 
converge at all
Energy need not decrease 
monotonically

O(N3)

{ψi}i=1,...,N
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When can we expect SCF to work?

SCF seeks to minimize a sequence of surrogate models
Gradients match at       , i.e. 
Consider simple 2D example:

E(x) =
1
2
xT Lx +

α

4
ρ(x)T L−1ρ(x)

L =
(

2 −1
−1 2

)
, x =

(
x1

x2

)
, ρ(x) =

(
x2

1

x2
2

)

minE(x)
s.t. x2

1 + x2
2 = 1

[
L + αDiag(L−1ρ(x))

]
x = λ1x

x(i) ∇E(x(i)) = ∇Esur(x(i))



α ‖res‖ iter
2 1.47 · 10−11 14
3 4.01 · 10−11 22
4 3.78 · 10−11 35
5 7.60 · 10−11 58
6 1.07 · 10−10 126
7 1.41 · 10−1 200
8 1.03 · 10 0 200
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Convergence of SCF on toy problem



SCF step is 
too long!

XTX = 1 constraintLevel sets of surrogate

Level sets 
of Energy
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Improving SCF

Construct better surrogate – cannot afford to use local 
quadratic approximations (Hessian too expensive)

Charge mixing to improve convergence; related to 
Broyden methods

Use trust region to restrict the update to stay within a 
neighborhood of the gradient matching point
 Level-Shifting (Saunders & Hillier 1973)
 Cances & LeBris 2000
 TRSCF – Thogersen, Olsen, Yeager & Jorgensen 2004; 

Francisco, Martinez, Martinez 2006; Yang, Meza, Wang 
(2007)
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Charge Mixing Schemes

Simple mixing

Pulay mixing (Direct Inversion of Iterative Subspace)

Broyden mixing

Anderson mixing

ρ(i+1) ← τρ(i)
in + (1− τ)ρ(i)

out, 0 < τ < 1.

ρ(i+1) =
i∑

j=1

αjρ
(j),

i∑

j=1

αj = 1

ρ(i+1) = ρ(i) + τri + (Si − τYi)Y †
i ri

ρ(i+1) = ρ(i) + τCi+1ri
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Trust Region Subproblem

Solve

Equivalent to solving

    is a penalty parameter (Lagrange multiplier for TR) 

[
H(x(i))− σx(i)(x(i))T

]
x = λx

xT x = 1

min Esur(x)
s.t.

xT x = 1,

‖xxT − x(i)(x(i))T ‖2F ≤ ∆ trust region constraint

σ
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Comparison of TRSCF vs. mixing
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Comparison of other charge mixing 
schemes

Alanine
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Charge mixing can fail

Pt6Ni2O
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Direct Constrained Minimization

• Assume x(i) is the current approximation

• Idea: minimize the energy in a certain (smaller) subspace

• Update x(i+1) = αx(i) + βp(i−1) + γr(i);

– p(i−1) previous search direction;
– r(i) = H(i)x(i) − θ(i)x(i);
– choose α, β and γ so that

∗ xT
k+1xk+1 = 1;

∗ E(xk+1) < E(xk);

Remark 1: A nonlinear CG-like algorithm
Remark 2: Extension of LOBPCG (Knyazev) to nonlinear EV
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Subspace minimization

• Let V = (x(i), p(i−1), r(i)); x(i+1) = V y, for some y;

• Solve
min

yT V T V y=1
E(V y)

• Equivalent to solving

G(y)y = λBy

yT By = 1

where B = V T V and G(y) = V T [L + αDiag(L−1ρ(V y))]V
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DCM Algorithm

Input: Initial guess
Output:      such that         is minimized

1. P (0) = [], i = 0;

2. while ( not converged )

(a) Θ(i) = X(i)∗H(i)X(i);
(b) R(i) = H(i)X(i) −X(i)Θ(i);
(c) Set Y = (X(i), P (i−1), K−1R(i));
(d) Solve minG∗Y ∗Y G=Ik Etot(Y G);
(e) X(i+1) = Y G(1 : ne, :); P (i+1) = Y G(ne + 1 : 3ne, :);
(f) i← i + 1;

X EKS

C. Yang, J. Meza, L. Wang, A Constrained Optimization Algorithm for Total Energy Minimization in 
Electronic Structure Calculation, J. Comp. Phy., 217 709-721 (2006)
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Test problems

KSSOLV Matlab code for solving the Kohn-Sham 
equations
 Open source package
 Handles SCF, DCM, Trust Region
 Various mixing strategies

Example problems: alanine and graphene
Tests run on desktop computer
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Example 1:  Alanine

sampling grid: 
• 96 x 48 x 96 

(ecut=25 Ryd)
10 PCG 
iterations / SCF 
outer iteration
3 inner SCF 
iteration / DCM 
outer iteration
supercell:
  20 x 15 x 20
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Example 2: Graphene

sampling grid:
• 114 x 114 x 15

10 PCG 
iterations / SCF 
outer iteration
5 inner SCF 
iteration / DCM 
outer iteration
supercell:

40 x 40 x 5



a1 = Atom(’Si’);
a2 = Atom(’H’);
alist = [a1 a2 a2 a2 a2];
xyzlist= [
0.0 0.0 0.0
1.61 1.61 1.61
... ];

mol = Molecule();
mol = set(mol,’Blattice’,BL);
mol = set(mol,’atomlist’,alist);
mol = set(mol,’xyzlist’ ,xyzlist);
mol = set(mol,’ecut’, 25);
mol = set(mol,’name’,’SiH4’);
...
[Etot, X, vtot, rho] = dcm(mol);
isosurface(rho);
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Example: SiH4
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Comparison of DCM vs. SCF using KSSOLV

system SCF time DCM time SCF error DCM error
C2H6 26 25 9.4 e-6 3.5 e-6
CO2 26 23 3.1 e-3 1.1 e-4
H2O 16 16 5.7 e-5 2.2 e-5
HNCO 34 32 7.4 e-3 6.8 e-5
Quantum dot 18 16 5.0 e-3 3.7 e-1
Si2H4 25 23 1.8 e-3 2.7 e-4
silicon bulk 15 15 3.0 e-4 9.6 e-6
SiH4 20 19 9.7 e-6 4.9 e-7
Pt2Ni6O 415 281 3.7 e0 4.9 e-2
pentacene 887 493 5.2 e-1 2.5 e-2
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Summary

Despite dire warnings, mathematical techniques 
actually help in chemistry
New approach for solving the Kohn-Sham equations 
using a direct optimization method improves 
convergence 
Trust region modification increases robustness of both 
SCF and DCM
New computational software tools for modeling and 
simulation of nanosystems
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Where do we go from here

Investigate new algorithms to speed up convergence

Develop more accurate methods

Expand applicability of methods to new systems, (metals)

Develop linear scaling versions of DCM



First Nanoscientists?


