A Direct Constrained Optimization Method for
the Kohn-Sham Equations
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What do all of these have in common?
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On using mathematics for chemistry

Every attempt to employ mathematical methods
in the study of chemical questions must be
considered profoundly irrational and contrary to
the spirit of chemistry. If mathematical analysis
should ever hold a prominent place in chemistry —
an aberration which is happily almost
impossible — it would occasion a rapid and
widespread degeneration of that science.

Auguste Comte, 1830



100 years later — the problem is solved!

...In the Schrodinger equation we very nearly have the
mathematical foundation for the solution of the whole
problem of atomic and molecular structure ...

almost

...the problem of the many bodies contained in the atom
and the molecule cannot be completely solved without a
great further development in mathematical technique.

G.N. Lewis, J. Chem. Phys. 1, 17 (1933)



Many-body Schrodinger equation
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W, contains all the information needed to study a system
|W;|? probability density of finding electrons at a certain state
E; quantized energy

Computational work goes as 103", where N is the number of electrons



Density Functional Theory

® The unknown is simple — the electron density, p
® Hohenberg-Kohn Theory

* There is a unique mapping between the ground
state energy and density

= Exact form of the functional is unknown
® Independent particle model

» Electrons move independently in an average
effective potential field

» Add correction for correlation
® Good compromise between accuracy and feasibility



DFT codes play a major role in
comEutationaI science

® 9,660 nodes: 38,640 2.3 GHz
cores

® 356 Tflops/s peak

® DFT methods account for 75%
of the materials sciences
Erankiin (NERSC.5): Cray XT4 simulations at NERSC, totaling
over 5 million hours of

Science Climate Research

% computer time in 2006

Lattice Gauge Theory
7%

Chemistry
13%

== Accelerator
Physics
7%

Astrophysic
3

Fusion Energy
28%

Life Sciences 6%
Nuclear Physics 5%

Environmental_/ ! Applied Math 2%
Sciences Engineering

Geosciences 2%
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Fast forward to today: we can now simulate
realistic nanosystems

Advances in density functional theory
coupled with multinode
computational clusters now enable
accurate simulation of the behavior of
multi-thousand atom complexes that
mediate the electronic and ionic
transfers of solar energy conversion.
These new and emerging nanoscience
capabilities bring a fundamental

understanding of the atomic and
molecular processes of solar energy
utilization within reach.

The calculated dipole moment of a 2633 atom

CdSe quantum rod, Cdgs1Ser24Hess. Using 2560 Basic Research Needs for Solar
processors at NERSC the calculation took about Energy Utilization
30 hours. ’

Report of the BES Workshop on Solar
Wang, Zhao, Meza, Phys. Rev. B, 77, 165113 (2008) Energy Utilization,April 18-21, 2005
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Brief Review of
Fundamental Equations
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Kohn-Sham Formulation

® Use N noninteracting electrons as a reference

® Replace many-particle wavefunctions, V¥ ;, with single-
particle wavefunctions, ¥

® Write Kohn-Sham total energy as:

Brora[{t}] = Z / Vil + [ Vions

1
=y )0l drdr’ + Eo (o),
2 Jq |r—1|

p(r) =20 [Wa(r) 7, o vy = dij, ne
® Exchange-correlation term, E,.., contains quantum

mechanical contributions, plus part of K.E. not covered by
first term when using single-particle wavefunctions




Kohn-Sham Equations

@ Goal is to find the ground state energy by minimizing
total energy, Eiota

® Leads to:
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Discretization Options

Finite difference ¢'(r;) =~ [v(r; + h) — ¥ (r; — h)]/h

Finite elements

Z ;P (r

7

J

(r) functions with local support

Local orbital method (good for molecules)

— Choose ¢;(r) as Gaussian or other “nice” functions

Planewave expansion

— Choose ¢;(r) as

ez'gj-r



Finite Dimensional Problem

We want to find the ground state energy

min E[{¢;}] = /\vw? / onp + = /Qp(r)p( ) drdr’ + Eye(p)

=]

After dlscretlzatlon we have:

. X@;(n—l EKS (X) = Ekinetic(X) + Ez'on (X) + EHartree (X) + E:I:C(X),

Te

Erinetic = %trace(X*LX)
where Eionic = trace(XV;p, X™)
N X EHartree = %p(X )! LTp(X)
Ere = p(X)" (pae[p(X)])
p(X) = diag(XX")




KKT Conditions

® KKT conditions

VXﬁ(‘va A)
X*X = I,.

|
=

® Leads to Discretized Kohn-Sham equations

HX)X = XA,
X*X = I,

|
H(X) = gL+ Vien +Diag (L'p(X)) + Diag gue(p(X))



Approaches for solving the
Kohn-Sham Equations
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Solving the Kohn-Sham equations

® Self-Consistent Field (SCF) iteration
= view as a linear eigenvalue problem
* need to precondition

= usually used with other acceleration techniques to
Improve convergence

* no good convergence theory
® Direct Constrained Minimization
* minimize the total energy directly
" pose as a constrained optimization problem

= also requires globalization techniques
® Invariance property

E(XQ) = E(X) k)
( H(XQ) = H(X) for any Q°Q = I, j




Basic SCF Iteration

Selfconsistency

e Overall Complexity O(N?)
® Major computational work
(for plane wave codes):
3D FFT
® Orthogonalization
® Nonlocal potential
e Parallel efficiencies can be
quite high
¢ May converge slowly and
sometimes doesn't
converge at all
e Energy need not decrease
monotonically



When can we expect SCF to work?

® SCF seeks to minimize a sequence of surrogate models
® Gradients match aty() | i.e.VE(zV) = VE,,,(z9)
® Consider simple 2D example:

E(z) = %a:TLa: + %p(x)TL_lp(x)
(4 ) e (2) (1)

min F(x)
s.t. 2%+ 125 =1

[L + aDiag(L™! p(x))] T =M\



Convergence of SCF on toy problem

|res|| iter
1.47-107'Y | 14
4.01-107H | 22
3.78-107 | 35
7.60-10~11 | 58
1.07-10719 | 126
1.41-10=1 | 200
1.03-10Y | 200

0 ~J O UL W o9




Level sets
of Energy

SCF step is
too long!




Improving SCF

® Construct better surrogate — cannot afford to use local
quadratic approximations (Hessian too expensive)

® Charge mixing to improve convergence; related to
Broyden methods

® Use trust region to restrict the update to stay within a
neighborhood of the gradient matching point

» Level-Shifting (Saunders & Hillier 1973)
= (Cances & LeBris 2000

» TRSCF - Thogersen, Olsen, Yeager & Jorgensen 2004;
Francisco, Martinez, Martinez 2006; Yang, Meza, Wang
(2007)



Charge Mixing Schemes

® Simple mixing

U — ) + (1= 7)phy, 0 <7< 1.

n

@ Pulay mixing (Direct Inversion of Iterative Subspace)
pliHD) — ZO‘JP(j)’ ZO‘J —1
j=1 j=1
® Broyden mixing

® Anderson mixing
pUt) = p 7y 4 (S, — 7YY,



Trust Region Subproblem

® Solve
min Esur(x)
S.t.
wle = 1,
|zz? — 2@ (T2 < A trust region constraint

® Equivalent to solving

H(z®) —oz@ (N |z = X

Tr = 1

® o is a penalty parameter (Lagrange multiplier for TR)



Comparison of TRSCF vs. mixing

10
107° .
x
1
<
10—10 | .
— SCF
— SCF+charge mixing —e— SCF
—— TRSCF
| ! I I | | L ! 10—15 | | | I I I L L
2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18 20
iteration number iteration number
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Comparison of other charge mixing
schemes

—©— Anderson

Alanine N

10_8 —&— Pulay
=—%— Broyden
—&@— No mixing
10—10 I I I I I I I I
1 2 3 4 5 6 7 8 9 1C
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Charge mixing can fail

| —e— Anderson
|| =% Simple

PtsNi2O | =

1 2 3 4 5 6 7 8 9 10
iteration number (i)
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Direct Constrained Minimization

e Assume z(%) is the current approximation

e Idea: minimize the energy in a certain (smaller) subspace
® Update x(’&—i—l) — ng(z) -+ ﬁp(z_l) -+ ’Y?"(Z),

— pl=1 previous search direction;
— ) = F@O @ _ g 40).
— choose a, (8 and ~ so that
* x£+1xk+1 = 1;
x B(rpi1) < E(xy);

Remark 1: A nonlinear CG-like algorithm
Remark 2: Extension of LOBPCG (Knyazev) to nonlinear EV



Subspace minimization

o Let V = (x(z)jp(z—l),r(z))’ I(H_l) — Vy, for some Y

e Solve
' E(V
yTVI%glyzl ( y)
e Lquivalent to solving
Gly)y = By
yI'By = 1

where B = V'V and G(y) = V' [L + aDiag(L™ ' p(Vy))]V



DCM Algorithm

Input: Initial guess
Output: Xsuch that F'xsis minimized

1. PO =1, i=0;
2. while ( not converged )

(a) O = X7 @) x @),

(b) R® = HOX® _ x(H W,

(¢) Set Y = (X&), pt-1) K—1R():
(d) Solve ming~y+yg=r1, Etot(YG);
() X(HD =Y G(1:ne,:); PO = YG(ne +1: 3ne,2);
(f) i =1+ 1

C. Yang, J. Meza, L. Wang, A Constrained Optimization Algorithm for Total Energy Minimization in
Electronic Structure Calculation, J. Comp. Phy., 217 709-721 (2006)



Test problems

® KSSOLV Matlab code for solving the Kohn-Sham
equations

= Open source package

= Handles SCF, DCM, Trust Region

= Various mixing strategies
® Example problems: alanine and graphene
® Tests run on desktop computer



Example 1: Alanine

T I E
—©— SCF+Charge mixing]
=——tt—=DCM ]

® sampling grid:
« 96 x48 x 96
(ecut=25 Ryd)
® 10 PCG

iterations / SCF
outer iteration

® 3inner SCF
iteration / DCM
outer iteration

@ supercell:
= 20x15x20
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Example 2: Graphene

—©— SCF+Charge mixing
—#— DCM ]

® sampling grid: |
e M4x14x15
e 10 PCG al:
iterations / SCF 10?
outer iteration o ool
® 5 inner SCF J
iteration / DCM iy

outer iteration )
® supercell: 10
® 40x40x5 07}

iteration number (i)
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Example: SiH4

al = Atom(’Si’);
a2 = Atom(’H’);
alist = [al a2 a2 a2 a2];
xyzlist= [

0.0 0.0 0.0

1.61 1.61 1.61

.15

mol = Molecule();
mol = set(mol,’Blattice’,BL);
mol = set(mol,’atomlist’,alist);
mol = set(mol,’xyzlist’ ,xyzlist); .
mol = set(mol,’ecut’, 25);
mol = set(mol,’name’,’SiH4’); 15

25

[Etot, X, vtot, rho] = dcm(mol); K
isosurface(rho) ; 2

15
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Comparison of DCM vs. SCF using KSSOLV

system SCF time | DCM time || SCF error | DCM error
CoHg 26 25 9.4 e-6 3.5 e-6
COs 26 23 3.1 e-3 1.1 e-4
H>0 16 16 5.7 e-5 2.2 e-5
HNCO 34 32 7.4 e-3 6.8 e-5
Quantum dot 18 16 5.0 e-3 3.7 e-1
SioH, 25 23 1.8 e-3 2.7 e-4
silicon bulk 15 15 3.0 e-4 9.6 e-6
Si1Hy 20 19 9.7 e-6 4.9 e-7
PtsNigO 415 281 3.7 el 4.9 e-2
pentacene 887 493 5.2 e-1 2.5 e-2




Summary

® Despite dire warnings, mathematical techniques
actually help in chemistry

® New approach for solving the Kohn-Sham equations
using a direct optimization method improves
convergence

® Trust region modification increases robustness of both
SCF and DCM

® New computational software tools for modeling and
simulation of nanosystems



Where do we go from here

® Investigate new algorithms to speed up convergence
® Develop more accurate methods
® Expand applicability of methods to new systems, (metals)

® Develop linear scaling versions of DCM
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